
MATH 151 Exam 5 Notes Spring

1 Curves Defined by Parametric Equations

As you can see, curve C can not be described as a function, y = f (x).

Why?

We can however describe C another way. As functions of time.

By letting x and y be functions of a third variable, say t, we would

obtain

x = f (t) and y = g(t) with t acting as a parameter.

As t varies, the point (x, y) = (f (t), g(t)) also varies and traces out

a curve C



ex 1 Sketch the curve described by the parametric equations

x = t2 − 4 and y =
t

2
with − 2 ≤ t ≤ 3

So, picking some values for t we get

t -2 -1 0 1 2 3

x 0 -3 -4 -3 0 5

y -1 -1/2 0 1/2 1 3/2

As you can see this curve has direction

In general, a curve with parametric equations

x = f (t) y = g(t) a ≤ t ≤ b

has initial point (f (a), g(a)) and terminal point (f (b), g(b))



ex 2 Sketch the curve represented by the parametric equations

x = cos t y = sin t 0 ≤ t ≤ 2π

This appears to be a circle. We can confirm this by eliminating the

parameter

x2 + y2 = cos2 t + sin2 t = 1

What would happen if we sketched

x = sin t y = cos t 0 ≤ t ≤ 2π



We get the same picture but now the direction is clockwise

What would happen if we sketched

x = sin 2t y = cos 2t 0 ≤ t ≤ 2π

We get a similar picture but now the curve goes around twice. You get

the idea...

ex 3 Sketch the curve represented by the parametric equations

x = 3cos θ y = 4sin θ 0 ≤ θ ≤ 2π

Let’s eliminate the parameter, θ , to see what this should look like

cos2 θ + sin2 θ = 1 =⇒
(x

3

)2
+
(y

4

)2
= 1 =⇒

x2

9
+
y2

16
= 1 =⇒ an ellipse



ex 4 Sketch the curve represented by the parametric equations

x = sin t y = sin2 t

Note that y = x2 is a parabola, but |sin t| ≤ 1 so (x, y) =

(sin t, sin2 t) =⇒ the object moves back and forth along the

parabola from (−1, 1) to (1, 1) infinitely often.



There is another interesting curve that can be traced out using para-

metric equations called a cycloid

If you roll a sphere along a straight line the curve traced out by a

point P on the surface of the sphere follows the following path

If we take one section or arch of the cycloid and invert it we get the

following picture



If a ball is released from point C, do you think it will reach point B

before a ball that is released from point A?

It turns out they will reach point B at exactly the same time. Why

do you think this is?

Why do you think that a pendulum swings in the same arc as the

inverted arch of a cycloid?



Worksheet for Section 1

1. Let x = 1 + t , y = 5− 2t and −2 ≤ t ≤ 3:

(a) Sketch the curve and indicate direction as t increases.

(b) Eliminate the parameter to find a Cartesian equation of the

curve.

2. Describe the motion of the particle given by x = 2 + cos t, y =

3 + sin t, 0 ≤ t ≤ 2π



Homework for Section 1

1. Sketch x = 1 +
√
t , y = t2 − 4t , 0 ≤ t ≤ 5

2. Sketch x = t2 − 2 , y = 5− 2t , − 3 ≤ t ≤ 4 and eliminate the

parameter to find a Cartesian equation.

3. Eliminate the parameter and sketch x = sin θ , y = cos θ , 0 ≤
θ ≤ π

4. Describe the motion of x = 5sin t , y = 2cos t , − π ≤ t ≤ 5π



2 Calculus with Parametrics

We will cover tangents, arc length and surface area with parametric

curves.

2.1 Tangents

Since parametrics are defined in terms of both x and y, the derivative is

dy

dx
=

dy
dt
dx
dt

provided
dx

dt
6= 0

=⇒ horizontal tangent when?
dy

dt
= 0

=⇒ vertical tangent when?
dx

dt
= 0

The second derivative is slightly different so be careful!

d2y

dx2
=

d
dt

[
dy
dx

]
dx
dt

provided
dx

dt
6= 0

That is, take the derivative of the first derivative with respect to t and

then divide by dx/dt again.

ex 5 For the following curve, find the slope and concavity at (2, 3)

x =
√
t y =

1

4

(
t2 − 4

)
t ≥ 0

(x, y) = (2, 3) =⇒ t = 4

dy

dx
=

dy
dt
dx
dt

= . . . = t3/2 =⇒ slope = 8



d2y

dx2
=

d
dt

[
dy
dx

]
dx
dt

=
d
dt(t

3/2)
dx
dt

= . . . = 3t =⇒ CU at (2, 3)

2.2 Arc Length

For parametric equations the formula is:

L =

∫ β

α

√(
dx

dt

)2

+

(
dy

dt

)2

dt

provided that f ′ and g′ are continuous on [α, β] and the curve is tra-

versed exactly once as t goes from α to β

This is really just a technicality and you needn’t concern yourself with

it as any problem I provide will meet these conditions.

ex 6 Find the length around the unit circle where

x = cos t y = sin t and 0 ≤ t ≤ 2π

dx/dt = − sin t dy/dt = cos t =⇒

L =

∫ 2π

0

√
sin2 t + cos2 t dt =

∫ 2π

0

dt = 2π

as expected



2.3 Surface Area

Recall

rotation about the x-axis

S =

∫ β

α

2πy ds

rotation about the y-axis

S =

∫ β

α

2πx ds

but ds =

√(
dx

dt

)2

+

(
dy

dt

)2

dt either way

ex 7 Find the surface area by rotating x = 3t2, y = 2t3 0 ≤ t ≤ 5

about the y-axis

(
dx

dt

)2

+

(
dy

dt

)2

= (6t)2 + (6t2)2 = 36t2(1 + t2) =⇒

SA =

∫ 5

0

2π3t26t
√

1 + t2 dt = 18π

∫ 5

0

t2
√

1 + t22t dt

and if u = 1 + t2, u− 1 = t2 so du = 2t dt =⇒

18π

∫ 26

1

(u− 1)
√
u du = . . . =

24

5
π
(

949
√

26 + 1
)



Worksheet for Section 2

1. Find an equation of the tangent to x = t4 + 1 , y = t3 + t at the

point corresponding to t = −1.

2. Find the length of the curve x = et cos t, y = et sin t, 0 ≤ t ≤ π

3. Find the area of the surface obtained by rotating x = 3t− t3, y =

3t2, 0 ≤ t ≤ 1

about the x− axis.



Homework for Section 2

1. Find an equation of the tangent line to x = t4 + 1 , y = t3 + 4 at

t = −1

2. Find an equation of the tangent line to x = e
√
t , y = t− ln t2 at

t = 1

3. Find dy
dx and d2y

dx2
for the following as well as when the curves are

CU.

(a) x = 4 + t2 , y = t2 + t3

(b) x = t− et , y = t + e−t

4. SET UP ONLY the integral that represents the length of

x = t− t2 , y = 4/3t3/2 , 1 ≤ t ≤ 2

5. Find the exact length of x = 1 + 3t2 , y = 4 + 2t3 , 0 ≤ t ≤ 1

6. Find the exact length of x = etcos t , y = etsin t , 0 ≤ t ≤ π

7. Find the surface area by rotating x = acos3 θ , y = asin3 θ , 0 ≤
θ ≤ π/2 about the x-axis.



3 Polar Coordinates

If the angle is positive then it is measured counterclockwise

We will use the convention that if r is negative, the points (−r, θ) and

(r, θ) lie on the same line through the origin and at the same distance,

| r | from the origin but on opposite sides.

=⇒ If r > 0 then (r, θ) is in the same quadrant as θ

=⇒ If r < 0 then (r, θ) is in the quadrant on the opposite side

that is, (−r, θ) = (r, θ + π)



ex 8 Plot (−3, 3π/4)

WHAT IS THE CONNECTION BETWEEN POLAR AND

CARTESIAN COORDINATES?



Note that:

cos θ =
x

r
sin θ =

y

r
and x2 + y2 = r2

If Polar is known then Cartesian is =⇒ x = r cos θ and y = r sin θ

If Cartesian is known then Polar is =⇒ r2 = x2 + y2 and tan θ = y
x

ex 9 Convert (
√

3, π/6) to Cartesian coordinates

x =
√

3 cos π/6 and y =
√

3 sin π/6 =⇒ (x, y) =

(
3

2
,

√
3

2

)

ex 10 Convert (−1, 1) to Polar coordinates

tan θ =
y

x
= − 1 =⇒ θ =

3π

4
Since θ is in the same quadrant as (−1, 1) use r > 0 where r =√
x2 + y2 =

√
2

So, ONE set of polar coordinates is(√
2,

3π

4

)
We could also use (

−
√

2,
7π

4

)



Polar Graphs

One way is to convert to Cartesian

ex 11 Sketch r = 2 cos θ

So

r2 = 2rcos θ =⇒ x2 + y2 = 2x since x2 + y2 = r2 and rcos θ = x

=⇒ x2−2x+y2 = 0 =⇒ (x−1)2+y2 = 1 if you complete the square

This is then a circle whose radius is 1 and whose center is (1, 0)

We can also use parametric equations

If you want to sketch r = f (θ) write:

x = f (θ) cos θ and y = f (θ) sin θ

ex 12 Sketch r = 2 cos 3θ

Use the parametric equations:

x = 2 cos 3θ cos θ y = 2 cos 3θ sin θ



You get the following rose curve

Another popular polar shape is the cardiod. Here is an example of

r = 1 + sin θ



Tangent Lines

Recall

x = f (θ) cos θ and y = f (θ) sin θ

So we will need the PRODUCT RULE!

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

Horizontal tangents occur when

dy

dθ
= 0 and

dx

dθ
6= 0

Vertical tangents occur when

dx

dθ
= 0 and

dy

dθ
6= 0

ex 13 Find the vertical and horizontal tangent lines of r = sin θ

So

x = sin θ cos θ

y = sin θ sin θ = sin2 θ

dx

dθ
= cos2 θ − sin2 θ = cos 2θ = 0 =⇒ θ =

π

4
,

3π

4
dy

dθ
= 2 cos θ sin θ = sin 2θ = 0 =⇒ θ = 0,

π

2



Thus we have,

vertical tangents at

(√
2

2
,
π

4

)
and

(√
2

2
,

3π

4

)

horizontal tangents at (0, 0) and
(

1,
π

2

)



Worksheet for Section 3

1. Identify the curve by finding a Cartesian equation for r = 2 sin θ+

2 cos θ

2. Find a polar equation represented by the Cartesian equation x2 +

y2 = 9

3. Find the points on the curve r = eθ where the tangent line is

horizontal or vertical.



Homework for Section 3

1. Sketch the following region: 5π/3 ≤ θ ≤ 7π/3 for 2 < r < 3

2. Identify by finding a Cartesian equation for r = 2

3. Identify by finding a Cartesian equation for r = 3 sin θ

4. Find a polar equation for the following:

(a) x = 3

(b) x2 + y2 = 2cx

5. Sketch the following:

(a) r = sin θ

(b) r = 2(1− sin θ), θ ≥ 0

(c) r = θ, θ ≥ 0

6. Find the slope of the tangent line to r = 2 sin θ at θ = π/6

7. Find the slope of the tangent line to r = 1/θ at θ = π

8. Find the slope of the tangent line to r = cos 2θ at θ = π/4

9. Find the points on r = 3 cos θ where the tangent line is horizontal

or vertical.



4 Areas and Lengths in Polar Coordinates

Area in polar coordinates means utilizing sectors of a circle The entire

circle has area πr2.

So a sector has area what?

A =

(
θ

2π

)
πr2 =

1

2
r2θ

=⇒ Ai =
1

2
[f (θ∗i )]

2 ∆θ =⇒ A ≈
n∑
i=1

1

2
[f (θ∗i )]

2 ∆θ

Taking a limit we obtain

A =

∫ b

a

1

2
[f (θ)]2 dθ or

∫ b

a

1

2
r2 dθ



ex 14 Find the area of one petal of the rose curve r = 3 cos 3θ

A =
1

2

∫ π/6

−π/6
r2 dθ =

1

2

∫ π/6

−π/6
(3 cos 3θ)2 dθ =

9

2

∫ π/6

−π/6

1 + cos 6θ

2
dθ

=
9

4

[
θ +

sin 6θ

6

]π/6
−π/6

=
3π

4

ex 15 Find the area common to the two regions bounded by r =

−6 cos θ and r = 2− 2 cos θ

For this example as well as the next one I will need to demonstrate

graphically on the board in class. For now, be aware that finding the

points of intersection can be a little tricky in polar coordinates.

We will eventually arrive at the area being:



A

2
=

1

2

∫ 2π/3

π/2

(−6cos θ)2 dθ +
1

2

∫ π

2π/3

(2− 2cos θ)2 dθ = . . . = 5π

Arc Length

for

x = f (θ) cos θ and y = f (θ) sin θ

=⇒ dx

dθ
=

dr

dθ
cos θ − r sin θ and

dy

dθ
=

dr

dθ
sin θ + r cos θ

So (
dx

dθ

)2

+

(
dy

dθ

)2

= . . . =

(
dr

dθ

)2

+ r2

Therefore the arc length is

L =

∫ b

a

√
r2 +

(
dr

dθ

)2

dθ with
dr

dθ
being continuous

ex 16 Find the length of the arc from θ = 0 to θ = 2π for the cardioid

r = 2− 2 cos θ

So

L =

∫ 2π

0

√
(2− 2 cos θ)2 + (2 sin θ)2 dθ = 2

√
2

∫ 2π

0

√
1− cos θ dθ

= 2
√

2

∫ 2π

0

√
2 sin2

θ

2
dθ = 4

∫ 2π

0

sin
θ

2
dθ = 16



Worksheet for Section 4

1. Sketch the curve r = 3 cos θ and find the area in encloses.

2. Find the area enclosed by one loop of r = 3 cos 5θ

3. Find the length of the curve r = e2θ , 0 ≤ θ ≤ 2π



Homework for Section 4

1. Find the area of the region bounded by r = sin θ on π/3 ≤ θ ≤
2π/3

2. Sketch r = 3 cos θ and find the area it encloses.

3. Find the area enclosed by ONE loop of r = sin 2θ

4. Find the area that lies inside r = 3 cos θ and outside r = 1 + cos θ

5. Find the area that lies in both r =
√

3 cos θ and r = sin θ

6. Find the exact length of the polar curve r = 3 sin θ from 0 ≤ θ ≤
π/3
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