1 Curves Defined by Parametric Equations

As you can see, curve C can not be described as a function, $y=f(x)$. Why?

We can however describe C another way. As functions of time.
By letting x and y be functions of a third variable, say t, we would obtain
$x=f(t)$ and $y=g(t)$ with t acting as a parameter.
As t varies, the point $(x, y)=(f(t), g(t))$ also varies and traces out a curve C
ex 1 Sketch the curve described by the parametric equations

$$
x=t^{2}-4 \quad \text { and } \quad y=\frac{t}{2} \quad \text { with } \quad-2 \leq t \leq 3
$$

So, picking some values for t we get

t	-2	-1	0	1	2	3
x	0	-3	-4	-3	0	5
y	-1	$-1 / 2$	0	$1 / 2$	1	$3 / 2$

As you can see this curve has direction

In general, a curve with parametric equations

$$
x=f(t) \quad y=g(t) \quad a \leq t \leq b
$$

has initial point $(f(a), g(a))$ and terminal point $(f(b), g(b))$
ex 2 Sketch the curve represented by the parametric equations

$$
x=\cos t \quad y=\sin t \quad 0 \leq t \leq 2 \pi
$$

This appears to be a circle. We can confirm this by eliminating the parameter

$$
x^{2}+y^{2}=\cos ^{2} t+\sin ^{2} t=1
$$

What would happen if we sketched

$$
x=\sin t \quad y=\cos t \quad 0 \leq t \leq 2 \pi
$$

We get the same picture but now the direction is clockwise

What would happen if we sketched

$$
x=\sin 2 t \quad y=\cos 2 t \quad 0 \leq t \leq 2 \pi
$$

We get a similar picture but now the curve goes around twice. You get the idea...
ex 3 Sketch the curve represented by the parametric equations

$$
x=3 \cos \theta \quad y=4 \sin \theta \quad 0 \leq \theta \leq 2 \pi
$$

Let's eliminate the parameter, θ, to see what this should look like

$$
\begin{gathered}
\cos ^{2} \theta+\sin ^{2} \theta=1 \quad \Longrightarrow \quad\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{4}\right)^{2}=1 \quad \Longrightarrow \\
\frac{x^{2}}{9}+\frac{y^{2}}{16}=1 \quad \Longrightarrow \quad \text { an ellipse }
\end{gathered}
$$

ex 4 Sketch the curve represented by the parametric equations

$$
x=\sin t \quad y=\sin ^{2} t
$$

Note that $y=x^{2}$ is a parabola, but $|\sin t| \leq 1$ so $(x, y)=$ $\left(\sin t, \sin ^{2} t\right) \Longrightarrow \quad$ the object moves back and forth along the parabola from $(-1,1)$ to $(1,1)$ infinitely often.

There is another interesting curve that can be traced out using parametric equations called a cycloid

If you roll a sphere along a straight line the curve traced out by a point P on the surface of the sphere follows the following path

If we take one section or arch of the cycloid and invert it we get the following picture

If a ball is released from point C, do you think it will reach point B before a ball that is released from point A?

It turns out they will reach point B at exactly the same time. Why do you think this is?

Why do you think that a pendulum swings in the same arc as the inverted arch of a cycloid?

Worksheet for Section 1

1. Let $x=1+t, y=5-2 t$ and $-2 \leq t \leq 3$:
(a) Sketch the curve and indicate direction as t increases.
(b) Eliminate the parameter to find a Cartesian equation of the curve.
2. Describe the motion of the particle given by $x=2+\cos t, \quad y=$ $3+\sin t, \quad 0 \leq t \leq 2 \pi$

Homework for Section 1

1. Sketch $x=1+\sqrt{t}, \quad y=t^{2}-4 t, \quad 0 \leq t \leq 5$
2. Sketch $x=t^{2}-2, \quad y=5-2 t, \quad-3 \leq t \leq 4$ and eliminate the parameter to find a Cartesian equation.
3. Eliminate the parameter and sketch $x=\sin \theta, y=\cos \theta, 0 \leq$ $\theta \leq \pi$
4. Describe the motion of $x=5 \sin t, \quad y=2 \cos t, \quad-\pi \leq t \leq 5 \pi$

2 Calculus with Parametrics

We will cover tangents, arc length and surface area with parametric curves.

2.1 Tangents

Since parametrics are defined in terms of both x and y, the derivative is

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \text { provided } \frac{d x}{d t} \neq 0 \\
& \Longrightarrow \quad \text { horizontal tangent when? } \quad \frac{d y}{d t}=0 \\
& \Longrightarrow \quad \text { vertical tangent when? } \quad \frac{d x}{d t}=0
\end{aligned}
$$

The second derivative is slightly different so be careful!

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left[\frac{d y}{d x}\right]}{\frac{d x}{d t}} \text { provided } \frac{d x}{d t} \neq 0
$$

That is, take the derivative of the first derivative with respect to t and then divide by $d x / d t$ again.
ex 5 For the following curve, find the slope and concavity at $(2,3)$

$$
\begin{gathered}
x=\sqrt{t} \quad y=\frac{1}{4}\left(t^{2}-4\right) \quad t \geq 0 \\
(x, y)=(2,3) \Longrightarrow \quad t=4 \\
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\ldots=t^{3 / 2} \Longrightarrow \quad \text { slope }=8
\end{gathered}
$$

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left[\frac{d y}{d x}\right]}{\frac{d x}{d t}}=\frac{\frac{d}{d t}\left(t^{3 / 2}\right)}{\frac{d x}{d t}}=\ldots=3 t \quad \Longrightarrow \quad C U \text { at }(2,3)
$$

2.2 Arc Length

For parametric equations the formula is:

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

provided that f^{\prime} and g^{\prime} are continuous on $[\alpha, \beta]$ and the curve is traversed exactly once as t goes from α to β

This is really just a technicality and you needn't concern yourself with it as any problem I provide will meet these conditions.
ex 6 Find the length around the unit circle where

$$
\begin{gathered}
x=\cos t \quad y=\sin t \quad \text { and } \quad 0 \leq t \leq 2 \pi \\
d x / d t=-\sin t \quad d y / d t=\cos t \quad \Longrightarrow \\
L=\int_{0}^{2 \pi} \sqrt{\sin ^{2} t+\cos ^{2} t} d t=\int_{0}^{2 \pi} d t=2 \pi
\end{gathered}
$$

as expected

2.3 Surface Area

Recall
rotation about the x-axis

$$
S=\int_{\alpha}^{\beta} 2 \pi y d s
$$

rotation about the y-axis

$$
S=\int_{\alpha}^{\beta} 2 \pi x d s
$$

$$
\text { but } d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \quad \text { either way }
$$

ex 7 Find the surface area by rotating $x=3 t^{2}, \quad y=2 t^{3} \quad 0 \leq t \leq 5$ about the y-axis

$$
\begin{gathered}
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=(6 t)^{2}+\left(6 t^{2}\right)^{2}=36 t^{2}\left(1+t^{2}\right) \Longrightarrow \\
S A=\int_{0}^{5} 2 \pi 3 t^{2} 6 t \sqrt{1+t^{2}} d t=18 \pi \int_{0}^{5} t^{2} \sqrt{1+t^{2}} 2 t d t \\
\text { and if } u=1+t^{2}, u-1=t^{2} \text { so } d u=2 t d t \Longrightarrow \\
18 \pi \int_{1}^{26}(u-1) \sqrt{u} d u=\ldots=\frac{24}{5} \pi(949 \sqrt{26}+1)
\end{gathered}
$$

Worksheet for Section 2

1. Find an equation of the tangent to $x=t^{4}+1, y=t^{3}+t$ at the point corresponding to $t=-1$.
2. Find the length of the curve $x=e^{t} \cos t, y=e^{t} \sin t, 0 \leq t \leq \pi$
3. Find the area of the surface obtained by rotating $x=3 t-t^{3}, \quad y=$ $3 t^{2}, \quad 0 \leq t \leq 1$
about the $x-$ axis.

Homework for Section 2

1. Find an equation of the tangent line to $x=t^{4}+1, y=t^{3}+4$ at $t=-1$
2. Find an equation of the tangent line to $x=e^{\sqrt{t}}, y=t-\ln t^{2}$ at $t=1$
3. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for the following as well as when the curves are CU.
(a) $x=4+t^{2}, \quad y=t^{2}+t^{3}$
(b) $x=t-e^{t}, \quad y=t+e^{-t}$
4. SET UP ONLY the integral that represents the length of

$$
x=t-t^{2}, \quad y=4 / 3 t^{3 / 2}, \quad 1 \leq t \leq 2
$$

5. Find the exact length of $x=1+3 t^{2}, \quad y=4+2 t^{3}, \quad 0 \leq t \leq 1$
6. Find the exact length of $x=e^{t} \cos t, y=e^{t} \sin t, 0 \leq t \leq \pi$
7. Find the surface area by rotating $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta, 0 \leq$ $\theta \leq \pi / 2$ about the x-axis.

3 Polar Coordinates

If the angle is positive then it is measured counterclockwise We will use the convention that if r is negative, the points $(-r, \theta)$ and (r, θ) lie on the same line through the origin and at the same distance, $|r|$ from the origin but on opposite sides.
\Longrightarrow If $r>0$ then (r, θ) is in the same quadrant as θ
\Longrightarrow If $r<0$ then (r, θ) is in the quadrant on the opposite side

$$
\text { that is, } \quad(-r, \theta)=(r, \theta+\pi)
$$

ex 8 Plot $(-3,3 \pi / 4)$

WHAT IS THE CONNECTION BETWEEN POLAR AND CARTESIAN COORDINATES?

Note that:

$$
\cos \theta=\frac{x}{r} \quad \sin \theta=\frac{y}{r} \quad \text { and } \quad x^{2}+y^{2}=r^{2}
$$

If Polar is known then Cartesian is $\Longrightarrow \mathbf{x}=\mathbf{r} \cos \theta$ and $\mathbf{y}=\mathbf{r} \sin \theta$ If Cartesian is known then Polar is $\Longrightarrow \mathbf{r}^{2}=\mathrm{x}^{2}+\mathbf{y}^{2}$ and $\tan \theta=\frac{\mathrm{y}}{\mathrm{x}}$
ex 9 Convert $(\sqrt{3}, \pi / 6)$ to Cartesian coordinates
$x=\sqrt{3} \cos \pi / 6 \quad$ and $y=\sqrt{3} \sin \pi / 6 \quad \Longrightarrow \quad(x, y)=\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$
ex 10 Convert $(-1,1)$ to Polar coordinates

$$
\tan \theta=\frac{y}{x}=-1 \Longrightarrow \theta=\frac{3 \pi}{4}
$$

Since θ is in the same quadrant as $(-1,1)$ use $r>0$ where $r=$ $\sqrt{x^{2}+y^{2}}=\sqrt{2}$

So, ONE set of polar coordinates is

$$
\left(\sqrt{2}, \frac{3 \pi}{4}\right)
$$

We could also use

$$
\left(-\sqrt{2}, \frac{7 \pi}{4}\right)
$$

Polar Graphs

One way is to convert to Cartesian
ex 11 Sketch $r=2 \cos \theta$
So
$r^{2}=2 r \cos \theta \quad \Longrightarrow \quad x^{2}+y^{2}=2 x$ since $x^{2}+y^{2}=r^{2}$ and $\operatorname{rcos} \theta=x$
$\Longrightarrow x^{2}-2 x+y^{2}=0 \Longrightarrow(x-1)^{2}+y^{2}=1$ if you complete the square This is then a circle whose radius is 1 and whose center is $(1,0)$

We can also use parametric equations

If you want to sketch $r=f(\theta)$ write:
$x=f(\theta) \cos \theta \quad$ and $\quad y=f(\theta) \sin \theta$
ex 12 Sketch $r=2 \cos 3 \theta$

Use the parametric equations:

$$
x=2 \cos 3 \theta \cos \theta \quad y=2 \cos 3 \theta \sin \theta
$$

You get the following rose curve

Another popular polar shape is the cardiod. Here is an example of $r=1+\sin \theta$

Tangent Lines

Recall

$$
x=f(\theta) \cos \theta \quad \text { and } \quad y=f(\theta) \sin \theta
$$

So we will need the PRODUCT RULE!

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

Horizontal tangents occur when

$$
\frac{d y}{d \theta}=0 \text { and } \frac{d x}{d \theta} \neq 0
$$

Vertical tangents occur when

$$
\frac{d x}{d \theta}=0 \text { and } \frac{d y}{d \theta} \neq 0
$$

ex 13 Find the vertical and horizontal tangent lines of $r=\sin \theta$ So

$$
\begin{gathered}
x=\sin \theta \cos \theta \\
y=\sin \theta \sin \theta=\sin ^{2} \theta \\
\frac{d x}{d \theta}=\cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta=0 \quad \Longrightarrow \quad \theta=\frac{\pi}{4}, \frac{3 \pi}{4} \\
\frac{d y}{d \theta}=2 \cos \theta \sin \theta=\sin 2 \theta=0 \quad \Longrightarrow \quad \theta=0, \frac{\pi}{2}
\end{gathered}
$$

Thus we have,

$$
\text { vertical tangents at }\left(\frac{\sqrt{2}}{2}, \frac{\pi}{4}\right) \text { and }\left(\frac{\sqrt{2}}{2}, \frac{3 \pi}{4}\right)
$$

$$
\text { horizontal tangents at } \quad(0,0) \text { and }\left(1, \frac{\pi}{2}\right)
$$

Worksheet for Section 3

1. Identify the curve by finding a Cartesian equation for $r=2 \sin \theta+$ $2 \cos \theta$
2. Find a polar equation represented by the Cartesian equation $x^{2}+$ $y^{2}=9$
3. Find the points on the curve $r=e^{\theta}$ where the tangent line is horizontal or vertical.

Homework for Section 3

1. Sketch the following region: $5 \pi / 3 \leq \theta \leq 7 \pi / 3$ for $2<r<3$
2. Identify by finding a Cartesian equation for $r=2$
3. Identify by finding a Cartesian equation for $r=3 \sin \theta$
4. Find a polar equation for the following:
(a) $x=3$
(b) $x^{2}+y^{2}=2 c x$
5. Sketch the following:
(a) $r=\sin \theta$
(b) $r=2(1-\sin \theta), \quad \theta \geq 0$
(c) $r=\theta, \quad \theta \geq 0$
6. Find the slope of the tangent line to $r=2 \sin \theta$ at $\theta=\pi / 6$
7. Find the slope of the tangent line to $r=1 / \theta$ at $\theta=\pi$
8. Find the slope of the tangent line to $r=\cos 2 \theta$ at $\theta=\pi / 4$
9. Find the points on $r=3 \cos \theta$ where the tangent line is horizontal or vertical.

4 Areas and Lengths in Polar Coordinates

Area in polar coordinates means utilizing sectors of a circle The entire

circle has area πr^{2}.
So a sector has area what?

$$
\begin{gathered}
A=\left(\frac{\theta}{2 \pi}\right) \pi r^{2}=\frac{1}{2} r^{2} \theta \\
\Longrightarrow \quad A_{i}=\frac{1}{2}\left[f\left(\theta_{i}^{*}\right)\right]^{2} \Delta \theta \quad \Longrightarrow \quad A \approx \sum_{i=1}^{n} \frac{1}{2}\left[f\left(\theta_{i}^{*}\right)\right]^{2} \Delta \theta
\end{gathered}
$$

Taking a limit we obtain

$$
A=\int_{a}^{b} \frac{1}{2}[f(\theta)]^{2} d \theta \quad \text { or } \quad \int_{a}^{b} \frac{1}{2} r^{2} d \theta
$$

ex 14 Find the area of one petal of the rose curve $r=3 \cos 3 \theta$

$$
\begin{aligned}
A=\frac{1}{2} \int_{-\pi / 6}^{\pi / 6} r^{2} d \theta & =\frac{1}{2} \int_{-\pi / 6}^{\pi / 6}(3 \cos 3 \theta)^{2} d \theta=\frac{9}{2} \int_{-\pi / 6}^{\pi / 6} \frac{1+\cos 6 \theta}{2} d \theta \\
& =\frac{9}{4}\left[\theta+\frac{\sin 6 \theta}{6}\right]_{-\pi / 6}^{\pi / 6}=\frac{3 \pi}{4}
\end{aligned}
$$

ex 15 Find the area common to the two regions bounded by $r=$ $-6 \cos \theta$ and $r=2-2 \cos \theta$

For this example as well as the next one I will need to demonstrate graphically on the board in class. For now, be aware that finding the points of intersection can be a little tricky in polar coordinates.

We will eventually arrive at the area being:
$\frac{A}{2}=\frac{1}{2} \int_{\pi / 2}^{2 \pi / 3}(-6 \cos \theta)^{2} d \theta+\frac{1}{2} \int_{2 \pi / 3}^{\pi}(2-2 \cos \theta)^{2} d \theta=\ldots=5 \pi$

Arc Length

for

$$
x=f(\theta) \cos \theta \quad \text { and } \quad y=f(\theta) \sin \theta
$$

$\Longrightarrow \frac{d x}{d \theta}=\frac{d r}{d \theta} \cos \theta-r \sin \theta \quad$ and $\quad \frac{d y}{d \theta}=\frac{d r}{d \theta} \sin \theta+r \cos \theta$
So

$$
\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}=\ldots=\left(\frac{d r}{d \theta}\right)^{2}+r^{2}
$$

Therefore the arc length is

$$
L=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \quad \text { with } \quad \frac{d r}{d \theta} \quad \text { being continuous }
$$

ex 16 Find the length of the arc from $\theta=0$ to $\theta=2 \pi$ for the cardioid $r=2-2 \cos \theta$

So

$$
\begin{aligned}
L= & \int_{0}^{2 \pi} \sqrt{(2-2 \cos \theta)^{2}+(2 \sin \theta)^{2}} d \theta=2 \sqrt{2} \int_{0}^{2 \pi} \sqrt{1-\cos \theta} d \theta \\
& =2 \sqrt{2} \int_{0}^{2 \pi} \sqrt{2 \sin ^{2} \frac{\theta}{2}} d \theta=4 \int_{0}^{2 \pi} \sin \frac{\theta}{2} d \theta=16
\end{aligned}
$$

Worksheet for Section 4

1. Sketch the curve $r=3 \cos \theta$ and find the area in encloses.
2. Find the area enclosed by one loop of $r=3 \cos 5 \theta$
3. Find the length of the curve $r=e^{2 \theta}, 0 \leq \theta \leq 2 \pi$

Homework for Section 4

1. Find the area of the region bounded by $r=\sin \theta$ on $\pi / 3 \leq \theta \leq$ $2 \pi / 3$
2. Sketch $r=3 \cos \theta$ and find the area it encloses.
3. Find the area enclosed by ONE loop of $r=\sin 2 \theta$
4. Find the area that lies inside $r=3 \cos \theta$ and outside $r=1+\cos \theta$
5. Find the area that lies in both $r=\sqrt{3} \cos \theta$ and $r=\sin \theta$
6. Find the exact length of the polar curve $r=3 \sin \theta$ from $0 \leq \theta \leq$ $\pi / 3$
