Worksheet for Section 1

1. Find the volume of the solid obtained by rotating the region bounded by $y=e^{x}$, $y=$ $0, x=0, x=1$ about the x-axis. Sketch the region and a typical disk or washer.

$$
\begin{aligned}
& \text { the disks will have radius } r=e^{x} \text { so } A=\pi\left(e^{x}\right)^{2} \\
& V=\int_{0}^{1} A(x) d x=\int_{0}^{1} \pi\left(e^{x}\right)^{2} d x=\frac{\pi}{2}\left(e^{2}-1\right)
\end{aligned}
$$

2. Find the volume of the solid obtained by rotating the region bounded by $y=\sqrt{x-1}, x=$ $2, x=5, y=0$ about the x-axis. Sketch the region and a typical disk or washer.
the disks will have radius $r=\sqrt{x-1}$ so $A=\pi(\sqrt{x-1})^{2}=\pi(x-1)$

$$
V=\int_{2}^{5} A(x) d x=\int_{2}^{5} \pi(x-1) d x=\frac{15 \pi}{2}
$$

3. Find the volume of the solid obtained by rotating the region bounded by $x=y-y^{2}, x=0$ about the y-axis. Sketch the region and a typical disk or washer.
the disks will have radius $r=y-y^{2}$ so $A(y)=\pi\left(y-y^{2}\right)^{2}$

$$
V=\int_{0}^{1} A(y) d y=\int_{0}^{1} \pi\left(y-y^{2}\right)^{2} d y=\frac{\pi}{30}
$$

Worksheet for Section 2

1. Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by $y=x(x-1)^{2}$ and the x-axis about the y-axis. Sketch the region and a typical shell.
the shells will have radius $r=x$ so the circumference is $2 \pi x$ and the height is $x(x-1)^{2}$

$$
V=\int_{0}^{1} 2 \pi x\left(x(x-1)^{2}\right) d x=\ldots=\frac{\pi}{15}
$$

2. Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by $x=4 y^{2}-y^{3}$ and the line $x=0$ about the x-axis. Sketch the region and a typical shell.
the shells will have radius $r=y$ so the circumference is $2 \pi y$ and the height is $4 y^{2}-y^{3}$

$$
V=\int_{0}^{4} 2 \pi y\left(4 y^{2}-y^{3}\right) d y=\ldots=\frac{512 \pi}{5}
$$

Worksheet for Section 3

1. Find the average value of $h(r)=\frac{3}{(1+r)^{2}}$ on the interval $[1,6]$.

$$
A v g=\frac{1}{6-1} \int_{1}^{6} \frac{3}{(1+r)^{2}} d r=\frac{3}{5} \int_{1}^{6} u^{-2} d u=\ldots \frac{3}{14}
$$

Worksheet for Section 4

1. Find the length of $x=\frac{1}{3} \sqrt{y}(y-3), \quad 1 \leq y \leq 9$

HINT: Notice that the function is expressed as $x=$ stuff in y.

$$
\begin{aligned}
& x=\frac{1}{3} y^{3 / 2}-y^{1 / 2} \text { so } \frac{d x}{d y}=\frac{1}{2} y^{1 / 2}-\frac{1}{2} y^{-1 / 2}=\frac{\sqrt{y}}{2}-\frac{1}{2 \sqrt{y}}=\frac{y-1}{2 \sqrt{y}} \\
&\left(\frac{d x}{d y}\right)^{2}=\left(\frac{y-1}{2 \sqrt{y}}\right)^{2}=\frac{y^{2}-2 y+1}{4 y} \\
& \Longrightarrow \quad L=\int_{1}^{9} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\int_{1}^{9} \sqrt{1+\frac{y}{4}-\frac{1}{2}+\frac{1}{4 y}} d y \\
&=\int_{1}^{9} \sqrt{\left(\frac{1}{2} y^{1 / 2}+\frac{1}{2} y^{-1 / 2}\right)^{2}} d y=\left.\frac{1}{2}\left[\frac{2}{3} y^{3 / 2}+2 y^{1 / 2}\right]\right|_{1} ^{9}=\frac{32}{3}
\end{aligned}
$$

Worksheet for Section 5

1. Find the area of the surface obtained by rotating the the curve $y=\sqrt[3]{x}, \quad 1 \leq y \leq 2$ about the y-axis.

$$
\begin{gathered}
\text { about the y-axis } \Longrightarrow S=\int 2 \pi x d s \\
y=\sqrt[3]{x} \Longrightarrow y^{3}=x \text { so } 1+\left(\frac{d x}{d y}\right)^{2}=1+9 y^{4} \\
S=\int 2 \pi x d s=\int_{1}^{2} 2 \pi y^{3} \sqrt{1+9 y^{4}} d y=\frac{2 \pi}{36} \int_{1}^{2} \sqrt{1+9 y^{4}} \cdot 36 y^{3} d y \\
\frac{\pi}{18}\left[\left.\frac{2}{3}\left(1+9 y^{4}\right)^{3 / 2}\right|_{1} ^{2}\right]=\frac{\pi}{27}(145 \sqrt{145}-10 \sqrt{10})
\end{gathered}
$$

2. Find the area of the surface obtained by rotating the the curve $x=1+2 y^{2}, \quad 1 \leq y \leq 2$ about the x-axis.

$$
\begin{gathered}
\text { about the x-axis } \Longrightarrow S=\int 2 \pi y d s \\
x=1+2 y^{2} \Longrightarrow y^{3}=x \text { so } 1+\left(\frac{d x}{d y}\right)^{2}=1+16 y^{2} \\
S=\int 2 \pi y d s=\int_{1}^{2} 2 \pi y \sqrt{1+16 y^{2}} d y=\frac{\pi}{16} \int_{1}^{2} \sqrt{1+16 y^{2}} \cdot 32 y d y \\
\frac{\pi}{16}\left[\left.\frac{2}{3}\left(1+16 y^{2}\right)^{3 / 2}\right|_{1} ^{2}\right]=\frac{\pi}{24}(65 \sqrt{65}-17 \sqrt{17})
\end{gathered}
$$

