Homework Key for Section 1

1. Which of the following functions are solutions of the differential equation $y^{\prime \prime}+y=\sin x$?

$$
y=-\frac{1}{2} x \cos x
$$

2. Given the differential equation $y^{\prime}=-y^{2}$:
(a) What can you say about a solution by just looking at the differential equation?

$$
0 \text { or decreasing }
$$

(b) Verify that all members of the family $y=1 /(x+C)$ are solutions.
(c) Can you think of a solution that is not a member of the family in part (b)?

$$
y=0
$$

(d) Find a solution to $y^{\prime}=-y^{2} \quad y(0)=0.5$

$$
y=\frac{1}{x+2}
$$

3. A population is modeled by the differential equation

$$
\frac{d P}{d t}=1.2 P\left(1-\frac{P}{4200}\right)
$$

(a) For what values of P is the poulation increasing?

$$
0<P<4200
$$

(b) For what values of P is the poulation decreasing?

$$
P>4200
$$

(c) What are the equilibrium solutions?

$$
P=0, P=4200
$$

4. Explain why the functions with the given graphs can NOT be solutions to the following:

$$
\frac{d y}{d t}=e^{t}(y-1)^{2}
$$

Homework Key for Section 2

1. A direction field for the differential equation $y^{\prime}=x \sin y$ is shown.
(a) Sketch the graphs of the solutions that satisfy the given initial conditions.
i. $y(0)=1$
ii. $y(0)=2$
iii. $y(0)=\pi$
iv. $y(0)=4$
v. $y(0)=5$
(b) Find all of the equilibrium solutions.

$$
y=0, y=\pi
$$

2. Given the following direction fields, match them with their differential equations.
(a) $y^{\prime}=2-y$ top left
(b) $y^{\prime}=x(2-y)$ top right
(c) $y^{\prime}=x+y-1$ bottom left
(d) $y^{\prime}=\sin x \sin y$ bottom right
3. Use Euler's method with step size 0.1 to estimate $y(0.5)$ where y is the solution to $y^{\prime}=$ $y+x y, y(0)=1$

$$
y(0.5) \approx 1.7616
$$

Homework Key for Section 3

1. Solve the following differential equations.
(a)

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{y}{x} \\
& y=K x
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \left(x^{2}+1\right) y^{\prime}=x y \\
& y=K \sqrt{x^{2}+1}
\end{aligned}
$$

(c)

$$
\begin{gathered}
(1+\tan y) y^{\prime}=x^{2}+1 \\
y+\ln |\sec y|=\frac{x^{3}}{3}+x+C
\end{gathered}
$$

(d)

$$
\begin{gathered}
\frac{d y}{d t}=\frac{t e^{t}}{y \sqrt{1+y^{2}}} \\
y= \pm \sqrt{\left[3\left(t e^{t}-e^{t}+C\right)\right]^{2 / 3}-1}
\end{gathered}
$$

(e)

$$
\begin{gathered}
\frac{d y}{d x}=\frac{x}{y}, \quad y(0)=-3 \\
y=-\sqrt{x^{2}+9}
\end{gathered}
$$

(f)

$$
\begin{gathered}
x \cos x=\left(2 y+e^{3 y}\right) y^{\prime} \quad, \quad y(0)=0 \\
\cos x+x \sin x=y^{2}+\frac{e^{3 y}}{3}+\frac{2}{3}
\end{gathered}
$$

2. Given the following, $\frac{d P}{d t}=k(M-P)$, where $P(t)$ is the performance after training time t, M is the maximum level of performance and k is a positive constant. Solve this differential equation for P and find the limit of that expression.

$$
P(t)=M-M e^{-k t}, \quad M
$$

Homework Key for Section 4

1. Suppose a population develops according to the logistic equation

$$
\frac{d P}{d t}=0.05 P-0.0005 P^{2}
$$

where t is measured in weeks.
(a) What is the carrying capacity?

$$
100
$$

(b) Given the direction field, sketch solutions for initial populations of 20,40,60,80,120 and 140 .
(c) What are the equilibrium solutions?

$$
P=0, P=100
$$

Homework Key for Section 5

1. Determine whether the following differential equations are linear.
(a) $y^{\prime}+\cos x=y$
yes
(b) $y y^{\prime}+x y=x^{2}$
no
2. Solve the following:
(a) $y^{\prime}+2 y=2 e^{x}$

$$
y=\frac{2}{3} e^{x}+C e^{-2 x}
$$

(b) $x y^{\prime}-2 y=x^{2}$

$$
y=x^{2} \ln |x|+C x^{2}
$$

(c) $x y^{\prime}+y=\sqrt{x}$

$$
y=\frac{2}{3} \sqrt{x}+\frac{C}{x}
$$

(d) $y^{\prime}=x+y \quad, \quad y(0)=2$

$$
y=-x-1+3 e^{x}
$$

(e) $\frac{d v}{d t}-2 t v=3 t^{2} e^{t^{2}} \quad, \quad v(0)=5$

$$
v=t^{3} e^{t^{2}}+5 e^{t^{2}}
$$

