MATH 150

Final Review 6

1. Find $f^{(22)}(x)$ if $f(x) = \cos(3x)$

2. Find
$$\frac{d}{dx} \int_{x}^{\pi/4} \sin(t) \cos(t) dt$$

- 3. Find $\frac{d}{dx} \int_{2}^{x^2} \sin(t) \cos(t) dt$
- 4. Use Newton's method to find x_5 if $x_1 = 1$ for $x^3 x^2 1 = 0$
- 5. Two cars start moving from the same point. One travels south at 60 mi/hr and the other west at 25 mi/hr. At what rate is the distance between the cars increasing two hours later?
- 6. If $c(x) = \frac{f(g(x))}{f(x)}$ find c'(2) if g(2) = 4, g'(2) = 4, f(2) = 1, f'(2) = -1, g(4) = 0, g'(4) = -3, f(4) = 3 and f'(4) = 2
- 7. A kite 100 feet above the ground moves horizontally at a speed of 8 ft/sec. At what rate is the angle between the string and the horizontal decreasing when 200 feet of string has been let out?
- 8. Use implicit differentiation to find y' if $y = x + \sin(xy)$.

9. Find
$$\int_{e}^{e^2} \frac{dx}{x \ln(x)}$$

- 10. Find $\lim_{x \to 2} \frac{|x-2|}{x-2}$
- 11. If the position of a particle is given be $s(t) = t^3 4.5t^2 7t$ for $t \ge 0$ when does the particle have velocity 5 m/s?
- 12. Use a linear approximation to estimate f(1.2) for $f(x) = x^3 x$

13.
$$\int \frac{\csc(\sqrt{t}-3)\cot(\sqrt{t}-3)}{\sqrt{t}} dt$$

14. Find the x-values where $f(x) = x - 2\cos(x)$ has a horizontal tangent line on $[0, 2\pi]$

- 15. A solid has as its base the area bounded by $y = e^x$, x = 0, x = 1, and y = 0. Find the volume of the solid if every cross-section perpendicular to the x-axis is a square.
- 16. A rocket is fired directly up from the ground with initial velocity 64 ft/sec. What is the maximum height?
- 17. Find the most general antiderivative of: $\frac{(\ln(x))^2}{x}$
- 18. The area bounded by y = 2x and $y = 2x^2$ is revolved around the x-axis. Set up the integral to find the volume generated.
- 19. Find y' if $y = x^{x^2}$
- 20. Find $\lim_{x \to -\infty} \frac{2x+11}{\sqrt{x+x^2}}$
- 21. The area bounded by $y = x^{2/3}$, y = 0 and x = 1 is revolved around the y-axis. Find the volume generated using:
 - (a) dy integration
 - (b) dx integration
- 22. Set up the integral needed to find the surface area when $x = 4\sqrt{y}$ from $1 \le y \le 9$ is rotated around the x-axis.

Answers

13) $-2\csc(\sqrt{t}-3) + C$ 1) $-(3^{22})\cos(3x)$ 14) $\frac{7\pi}{6}$ and $\frac{11\pi}{6}$ $2) - \sin(x)\cos(x)$ 15) $\frac{1}{2}(e^2 - 1)$ 3) $2x\sin(x^2)\cos(x^2)$ 4) $x_5 = 1.465955...$ 16) 645) 6517) $\frac{1}{2}(\ln(x))^3 + C$ 6) 1118) $2\pi \int_{0}^{2} \left(\sqrt{\frac{y}{2}} - \frac{y}{2}\right) y \, dy \quad \underline{OR} \quad \pi \int_{0}^{1} (2x)^{2} - (2x^{2})^{2} \, dx$ $(7) - \frac{1}{50}$ 19) $y' = x^{x^2} (2x \ln(x) + x)$ 8) $y' = \frac{1 + y \cos(xy)}{1 - x \cos(xy)}$ 20) - 29) $\ln(2)$ 21a) $\pi \int_{0}^{1} 1 - (y^{3/2})^2 dy$ 10) DNE 21b) $2\pi \int_{0}^{1} x(x^{2/3}) dx$ 11) t = 422) $2\pi \int_{1}^{9} y \sqrt{1 + \left(\frac{2}{\sqrt{y}}\right)^2} dy$ 12) 0.4