Exam 2

Homework for Section 1

1. Sketch a graph of an example of a function f that satisfies all of the given conditions
(a) $\lim _{x \rightarrow 3^{+}} f(x)=4, \quad \lim _{x \rightarrow 3^{-}} f(x)=2, \quad \lim _{x \rightarrow-2} f(x)=2, \quad f(3)=3, \quad f(-2)=1$
(b) $\lim _{x \rightarrow 0^{-}} f(x)=1, \quad \lim _{x \rightarrow 0^{+}} f(x)=-1, \quad \lim _{x \rightarrow 2^{-}} f(x)=0, \quad \lim _{x \rightarrow 2^{+}} f(x)=$ $1, \quad f(2)=1, \quad f(0)$ is undefined
2. Use a table to estimate the value of

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x}
$$

3. Find the following limits if they exist:
(a)

$$
\begin{gathered}
\lim _{x \rightarrow 5^{+}} \frac{6}{x-5} \\
\infty
\end{gathered}
$$

(b)

$$
\begin{gathered}
\lim _{x \rightarrow 1} \frac{2-x}{(x-1)^{2}} \\
\infty
\end{gathered}
$$

4. In the theory of relativity the mass of a particle with velocity v is

$$
m=\frac{m_{0}}{\sqrt{1-v^{2} / c^{2}}}
$$

where m_{0} is the rest mass and c is the speed of light. What happens as $v \longrightarrow c^{-}$?

Homework for Section 2

1. Evaluate the following limit by JUSTIFYING EVERY STEP $\lim _{x \rightarrow 2} \frac{2 x^{2}+3}{x^{2}+2 x-1}$
2. Is the following a true statement?

$$
\frac{x^{2}+x-6}{x-2}=x+3
$$

3. Why is this statement true then?

$$
\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2}=\lim _{x \rightarrow 2} x+3
$$

4. Find the following limits if they exist:
(a) $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2} \ldots 5$
(b) $\lim _{x \rightarrow 2} \frac{x^{2}+x+6}{x-2} \ldots \pm \infty$
(c) $\lim _{x \rightarrow-3} \frac{x^{2}-9}{2 x^{2}+7 x+3} \ldots 6 / 5$
(d) $\lim _{h \rightarrow 0} \frac{(4+h)^{2}-16}{h} \ldots 8$
(e) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1} \ldots 3 / 2$
(f) $\lim _{t \rightarrow 9} \frac{9-t}{3-\sqrt{t}} \ldots 6$
(g) $\lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7} \ldots 1 / 6$
(h) $\lim _{x \rightarrow-4} \frac{\frac{1}{4}+\frac{1}{x}}{4+x} \ldots-1 / 16$
(i) $\lim _{x \rightarrow-4}|x+4| \ldots 0$
(j) $\lim _{x \rightarrow 4} \frac{|x-4|}{x-4} \ldots D N E$
5. Let $f(x)=\left\{\begin{array}{lll}4-x^{2} & \text { if } x \leq 2 \\ x-1 & \text { if } x>2\end{array}\right.$
(a) Find $\lim _{x \rightarrow 2^{-}} f(x) \ldots 0$
(b) Find $\lim _{x \rightarrow 2^{+}} f(x) \ldots 1$
(c) Find $\lim _{x \rightarrow 2} f(x) \ldots D N E$
6. If $f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{array} \quad\right.$ prove $\lim _{x \rightarrow 0} f(x)=0$ use the squeeze theorem
7. Is there a number a such that

$$
\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}
$$

exists? If so, find a and the limit.
If the bottom goes to 0 then the top has to as well

Homework for Section 3

1. Graph $f(x)=\sqrt{x}$ and use it to find a number δ such that $|\sqrt{x}-2|<0.4$ whenever $|x-4|<\delta$
2. Prove the following statements using the ϵ, δ definition.
(a) $\lim _{x \rightarrow-3}(1-4 x)=13$
(b) $\lim _{x \rightarrow 4}(7-3 x)=-5$
(c) $\lim _{x \rightarrow 3} \frac{x}{5}=\frac{3}{5}$
(d) $\lim _{x \rightarrow-2}\left(x^{2}-1\right)=3$
3. If $f(x)=\left\{\begin{array}{ll}0 & \text { if } x \text { is rational } \\ 1 & \text { if } x \text { is irrational }\end{array} \quad\right.$ prove $\lim _{x \rightarrow 0} f(x)$ does not exist.

Homework for Section 4

1. Sketch the graph of a function that is continuous everywhere except at $x=2$
2. Use the definition to show that $f(x)=x^{2}+\sqrt{7-x}$ is continuous at 4 .
3. Explain why the following functions are discontinuous at the given number a
(a) $f(x)=\ln |x-2| \quad a=2 \ldots$ not in domain
(b) $f(x)=\left\{\begin{array}{ll}\frac{1}{x-1} & \text { if } x \neq 1 \\ 2 & \text { if } x=1\end{array} \quad a=1 \ldots\right.$ limit does not equal $f(1)$
(c) $f(x)=\left\{\begin{array}{ll}e^{x} & \text { if } x<0 \\ x^{2} & \text { if } x \geq 0\end{array} \quad a=0 \ldots\right.$ limit $D N E$
4. Find the numbers where the following functions are discontinuous
(a) $f(x)= \begin{cases}1+x^{2} & \text { if } x \leq 0 \\ 2-x & \text { if } 0<x \leq 2 \text {...at } 0 \\ (x-2)^{2} & \text { if } x>2\end{cases}$
(b) $f(x)= \begin{cases}x+2 & \text { if } x<0 \\ e^{x} & \text { if } 0 \leq x \leq 1 \quad \text {...at } 0 \text { and } 1 \\ 2-x & \text { if } x>1\end{cases}$
5. For what constant c is the following function continuous on $(-\infty, \infty) . f(x)=\left\{\begin{array}{lll}c x+1 & \text { if } & x \leq 3 \\ c x^{2}-1 & \text { if } & x>3\end{array}\right.$

$$
c=1 / 3
$$

6. If $f(x)=x^{3}-x^{2}+x$ show there is a number c such that $f(c)=10$.
Use IVT
7. Use the IVT to show that $f(x)=x^{4}+x-3=0$ must have a root in $(1,2)$
8. For what values is the following function continuous? $f(x)= \begin{cases}0 & \text { if } x \text { is rational } \\ 1 & \text { if } x \text { is irrational }\end{cases}$

Homework for Section 5

1. Sketch the graph of an example of a function that satisfies the given conditions.
(a) $\lim _{x \rightarrow 0^{+}} f(x)=\infty, \lim _{x \rightarrow 0^{-}} f(x)=-\infty, \quad \lim _{x \rightarrow \infty} f(x)=1, \quad \lim _{x \rightarrow-\infty} f(x)=1$
(b) $\lim _{x \rightarrow 0^{-}} f(x)=-\infty, \quad \lim _{x \rightarrow 0^{+}} f(x)=\infty, \quad \lim _{x \rightarrow 2} f(x)=-\infty, \quad \lim _{x \rightarrow \infty} f(x)=$ $\infty, \quad \lim _{x \rightarrow-\infty} f(x)=0$
2. Find the following limits if they exist:
(a)

$$
\lim _{x \rightarrow \infty} \frac{3 x+5}{x-4}
$$

(b)

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{2-3 x^{2}}{5 x^{2}+4 x} \\
-3 / 5
\end{gathered}
$$

(c)

$$
\begin{gathered}
\lim _{x \rightarrow-\infty} \frac{x^{2}+2}{x^{3}+x^{2}-1} \\
0
\end{gathered}
$$

(d)

$$
\lim _{u \rightarrow \infty} \frac{4 u^{4}+5}{\left(u^{2}-2\right)\left(2 u^{2}-1\right)}
$$

2
(e)

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{6}-x}}{x^{3}+1} \frac{3}{3}
$$

(f)

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \cos x \\
D N E
\end{gathered}
$$

(g)

$$
\lim _{x \rightarrow \infty} \sqrt{x}
$$

3. Find the horizontal and vertical asymptotes of $y=\frac{x^{2}+4}{x^{2}-1} \ldots$ horiz at 1 vert at $1,-1$

Homework for Section 6

1. Find the slope of the tangent line at the given point for the following functions:
(a) $f(x)=x^{2}+2 x$ at $(-3,3) \ldots-4$
(b) $f(x)=\sqrt{2 x+1}$ at $(4,3) \ldots 1 / 3$
(c) $f(x)=\frac{1}{x+1}$ at $(1,1 / 2) \ldots-1 / 4$
2. A ball is thrown into the air so that its height in feet after t seconds is $s(t)=t^{2}-8 t+18$
(a) What is the average velocity over the following intervals?
i. $[3,4]$
ii. $[3.5,4]$
iii. $[4,5]$
iv. $[4,4.5]$
(b) What is the instantaneous velocity at $t=4$?
3. A different ball is thrown into the air so that its height in feet after t seconds is $h(t)=$ $58 t-0.83 t^{2}$
(a) What is the velocity after one second?
(b) When will the ball strike the ground?
(c) What is the velocity at this time?
4. Sketch a graph of a function f that satisfies all of the given conditions:
(a) $f(0)=0, f^{\prime}(0)=3, \quad f^{\prime}(1)=0$, and $f^{\prime}(2)=-1$
(b) $f(0)=0, f^{\prime}(0)=3, \quad f^{\prime}(1)=0$, and $f^{\prime}(2)=1$
5. Find $f^{\prime}(a)$ for the following functions:
(a) $f(x)=x^{2}-2 x+2 \ldots 2 a-2$
(b) $f(x)=\frac{2 x+1}{x+3}$

$$
\frac{5}{(a+3)^{2}}
$$

(c) $f(x)=\sqrt{3 x+1}$

$$
\frac{3}{2 \sqrt{3 a+1}}
$$

6. Each limit represents the derivative for some f at some number a. Find f and a for each.
(a) $\lim _{h \rightarrow 0} \frac{(1+h)^{10}-1}{h} \ldots x^{10} \quad a=1$
(b) $\lim _{x \rightarrow 5} \frac{2^{x}-32}{x-5} \ldots 2^{x} a=5$
(c) $\lim _{x \rightarrow \pi / 4} \frac{\tan x-1}{x-\pi / 4} \ldots \tan x a=\pi / 4$
7. Find the velocity when $t=2$ if the displacement is given by $s(t)=t^{2}-6 t-5 \ldots-2$
8. The number of bacteria after t hours is $n=f(t)$.
(a) What is meant by $f^{\prime}(5)$?
(b) Given unlimited space and nutrients, which is larger, $f^{\prime}(5)$ or $f^{\prime}(10)$?
(c) Given limited space and nutrients, would you change your answer? Why?

Homework for Section 7

1. Make a careful sketch of the following functions and on the same set of axes sketch f^{\prime}. Can you guess a formula for $f^{\prime}(x)$ from the graphs?
(a) $f(x)=\sin x$
(b) $f(x)=\ln x$
(c) $f(x)=e^{x}$
2. The following table gives displacements at various times t.

t	$s(t)$	t	$s(t)$
1	68	6	54
2	75	7	49
3	69	8	45
4	61	9	42
5	56	10	40

(a) What is the meaning of $s^{\prime}(t)$?
(b) What are its units?
(c) Construct a table of values for $s^{\prime}(t)$.
3. SHOW where $f(x)=|x-3|$ is not differentiable.

