Exam 5

Worksheet for Section 1

1. Let $x=1+t, y=5-2 t$ and $-2 \leq t \leq 3$:
(a) Sketch the curve and indicate direction as t increases.

t	-2	-1	0	1	2	3
x	-1	0	1	2	3	4
y	9	7	5	3	1	-1

(b) Eliminate the parameter to find a Cartesian equation of the curve.

$$
\begin{gathered}
x=1+t \quad \Longrightarrow \quad t=x-1 \\
\Longrightarrow \quad y=5-2(x-1)=-2 x+7 \\
\text { so } y=-2 x+7 \text { for }-1 \leq x \leq 4
\end{gathered}
$$

2. Describe the motion of the particle given by $x=2+\cos t, y=3+\sin t, \quad 0 \leq t \leq 2 \pi$

$$
x-2=\cos t, y-3=\sin t \quad \Longrightarrow \quad \sin ^{2} t+\cos ^{2} t=(y-3)^{2}+(x-2)^{2}=1
$$

the motion is on the unit circle centered at $(2,3)$ as t goes from 0 to 2π
the particle makes one complete counterclockwise rotation starting and ending at $(3,3)$

Worksheet for Section 2

1. Find an equation of the tangent to $x=t^{4}+1, y=t^{3}+t$ at the point corresponding to $t=-1$.

$$
\begin{aligned}
& \frac{d y}{d t}=3 t^{2}+1, \frac{d x}{d t}=4 t^{3} \quad \Longrightarrow \quad \frac{d y}{d x}=\frac{3 t^{2}+1}{4 t^{3}} \\
& t=-1 \quad \Longrightarrow \quad(x, y)=(2,-2) \text { so } \frac{d y}{d x}=\frac{4}{-4}=-1
\end{aligned}
$$

the equation is $y-(-2)=(-1)(x-2) \Longrightarrow y=-x$
2. Find the length of the curve $x=e^{t} \cos t, y=e^{t} \sin t, \quad 0 \leq t \leq \pi$

$$
\begin{aligned}
\left(\frac{d x}{d t}\right)^{2} & +\left(\frac{d y}{d t}\right)^{2}=\left(e^{t}(\cos t-\sin t)\right)^{2}+\left(e^{t}(\cos t+\sin t)\right)^{2}=2 e^{2 t} \\
& \Longrightarrow \quad L=\int_{0}^{\pi} \sqrt{2 e^{2 t}} d t=\int_{0}^{\pi} \sqrt{2} e^{t} d t=\sqrt{2}\left(e^{\pi}-1\right)
\end{aligned}
$$

3. Find the area of the surface obtained by rotating $x=3 t-t^{3}, \quad y=3 t^{2}, \quad 0 \leq t \leq 1$ about the x-axis.

$$
\begin{gathered}
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=\left(3-3 t^{2}\right)^{2}+(6 t)^{2}=\left(3\left(1+t^{2}\right)\right)^{2} \\
\Longrightarrow \quad S A=\int_{0}^{1}(2 \pi)\left(3 t^{2}\right)(3)\left(1+t^{2}\right) d t=18 \pi \int_{0}^{1}\left(t^{2}+t^{4}\right) d t=\frac{48}{5} \pi
\end{gathered}
$$

Worksheet for Section 3

1. Identify the curve by finding a Cartesian equation for $r=2 \sin \theta+2 \cos \theta$

$$
\begin{aligned}
r=2 \sin \theta+2 \cos \theta & \Longrightarrow r^{2}=2 r \sin \theta+2 r \cos \theta \quad \Longrightarrow \quad x^{2}+y^{2}=2 x+2 y \\
\Longrightarrow & (x-1)^{2}+(y-1)^{2}=2 \Longrightarrow \text { a circle }
\end{aligned}
$$

2. Find a polar equation represented by the Cartesian equation $x^{2}+y^{2}=9$

$$
x^{2}+y^{2}=9 \quad \Longrightarrow \quad r^{2}=9 \quad \Longrightarrow \quad r=3 \text { or } r=-3
$$

3. Find the points on the curve $r=e^{\theta}$ where the tangent line is horizontal or vertical.

$$
\begin{gathered}
\frac{d y}{d \theta}=e^{\theta} \sin \theta+e^{\theta} \cos \theta=0 \Longrightarrow \sin \theta=-\cos \theta \Longrightarrow \tan \theta=-1 \\
\text { so } \theta=-\frac{\pi}{4}+n \pi \quad(n \in \mathbb{Z}) \text { horizontal tangents at }\left(e^{-\pi / 4+n \pi},-\frac{\pi}{4}+n \pi\right) \\
\frac{d x}{d \theta}=e^{\theta} \cos \theta-e^{\theta} \sin \theta=0 \Longrightarrow \sin \theta=\cos \theta \Longrightarrow \tan \theta=1 \\
\text { so } \theta=\frac{\pi}{4}+n \pi \quad(n \in \mathbb{Z}) \text { vertical tangents at }\left(e^{\pi / 4+n \pi}, \frac{\pi}{4}+n \pi\right)
\end{gathered}
$$

Worksheet for Section 4

1. Sketch the curve $r=3 \cos \theta$ and find the area in encloses.
this is a circle that sits against the "y" axis from $(0,0)$ to $(3,0)$

$$
\begin{gathered}
A=2 \int_{0}^{\pi / 2} \frac{1}{2} r^{2} d \theta=\int_{0}^{\pi / 2}(3 \cos \theta)^{2} d \theta=9 \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta \\
=9 \int_{0}^{\pi / 2}\left(\frac{1}{2}+\frac{\cos 2 \theta}{2}\right) d \theta=\frac{9 \pi}{4}
\end{gathered}
$$

2. Find the area enclosed by one loop of $r=3 \cos 5 \theta$

$$
\begin{gathered}
r=0 \Longrightarrow 3 \cos 5 \theta=0 \Longrightarrow 5 \theta=\frac{\pi}{2} \Longrightarrow \theta=\frac{\pi}{10} \\
A=2 \int_{0}^{\pi / 10} \frac{1}{2}(3 \cos 5 \theta)^{2} d \theta=\frac{9}{2} \int_{0}^{\pi / 10}(1+\cos 10 \theta) d \theta=\frac{9 \pi}{20}
\end{gathered}
$$

3. Find the length of the curve $r=e^{2 \theta} \quad, \quad 0 \leq \theta \leq 2 \pi$

$$
\begin{gathered}
L=\int_{0}^{2 \pi} \sqrt{\left(e^{2 \theta}\right)^{2}+\left(2 e^{2 \theta}\right)^{2}} d \theta=\int_{0}^{2 \pi} \sqrt{5 e^{4 \theta}} d \theta \\
=\sqrt{5} \int_{0}^{2 \pi} e^{2 \theta} d \theta=\frac{\sqrt{5}}{2}\left(e^{4 \pi}-1\right)
\end{gathered}
$$

