MATH 151

HW Problems Key

Homework Key for Section 1

- 1. Sketch $x=1+\sqrt{t}$, $\ y=t^2-4t$, $\ 0\leq t\leq 5$
- 2. Sketch $x = t^2 2$, y = 5 2t, $-3 \le t \le 4$ and eliminate the parameter to find a Cartesian equation.

$$x = \frac{1}{4}(5-y)^2 - 2$$

3. Eliminate the parameter and sketch $x = \sin \theta$, $y = \cos \theta$, $0 \le \theta \le \pi$

$$x^2 + y^2 = 1$$
, $x \ge 0$

4. Describe the motion of x = 5sin t, y = 2cos t, $-\pi \le t \le 5\pi$

moves three times clockwise around the ellipse $\frac{x^2}{25} + \frac{y^2}{4} = 1$

Homework Key for Section 2

1. Find an equation of the tangent line to $x = t^4 + 1$, $y = t^3 + 4$ at t = -1

$$y - 3 = -3/4(x - 2)$$

2. Find an equation of the tangent line to $x = e^{\sqrt{t}}$, $y = t - \ln t^2$ at t = 1

$$y = -\frac{2x}{e} + 3$$

- 3. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for the following as well as when the curves are CU.
 - (a) $x = 4 + t^2$, $y = t^2 + t^3$ (b) $x = t - e^t$, $y = t + e^{-t}$ $-e^{-t}$, $\frac{e^{-t}}{1 - e^t}$, t < 0
- 4. SET UP ONLY the integral that represents the length of

$$x = t - t^2 , \quad y = 4/3t^{3/2} , \quad 1 \le t \le 2$$

$$\int_1^2 \sqrt{1 + 4t^2} \, dt$$

5. Find the exact length of $x=1+3t^2$, $\ y=4+2t^3$, $\ 0\leq t\leq 1$

$$4\sqrt{2} - 2$$

6. Find the exact length of $x = e^t cos t$, $y = e^t sin t$, $0 \le t \le \pi$

$$\sqrt{2}(e^{\pi}-1)$$

7. Find the surface area by rotating $x = acos^3 \theta$, $y = asin^3 \theta$, $0 \le \theta \le \pi/2$ about the x-axis.

$$\frac{6}{5}\pi a^2$$

Homework Key for Section 3

- 1. Sketch the following region: $5\pi/3 \leq \theta \leq 7\pi/3$ for 2 < r < 3
- 2. Identify by finding a Cartesian equation for r = 2

circle centered at the origin of radius 2

3. Identify by finding a Cartesian equation for $r = 3 \sin \theta$

circle centered at (0,3/2) with radius 3/2

- 4. Find a polar equation for the following:
 - (a) x = 3(b) $x^2 + y^2 = 2cx$ $r = 2c \cos \theta$
- 5. Sketch the following:
 - (a) $r = \sin \theta$ (b) $r = 2(1 - \sin \theta), \quad \theta \ge 0$ (c) $r = \theta, \quad \theta \ge 0$

6. Find the slope of the tangent line to $r = 2 \sin \theta$ at $\theta = \pi/6$

 $\sqrt{3}$

7. Find the slope of the tangent line to $r = 1/\theta$ at $\theta = \pi$

 $-\pi$

8. Find the slope of the tangent line to $r = \cos 2\theta$ at $\theta = \pi/4$

9. Find the points on $r = 3 \cos \theta$ where the tangent line is horizontal or vertical.

horizontal at $(3/\sqrt{2}, \pi/4), (-3/\sqrt{2}, 3\pi/4)$ vertical at $(3, 0), (0, \pi/2)$

Homework Key for Section 4

1. Find the area of the region bounded by $r = \sin \theta$ on $\pi/3 \le \theta \le 2\pi/3$

$$\frac{\pi}{12} + \frac{\sqrt{3}}{8}$$

2. Sketch $r = 3 \cos \theta$ and find the area it encloses.

```
\frac{9\pi}{4}
```

3. Find the area enclosed by ONE loop of $r=\sin\,2\theta$

 $\frac{\pi}{8}$

4. Find the area that lies inside $r = 3 \cos \theta$ and outside $r = 1 + \cos \theta$

```
\pi
```

5. Find the area that lies in both $r = \sqrt{3} \cos \theta$ and $r = \sin \theta$

$$\frac{5\pi}{24} - \frac{\sqrt{3}}{4}$$

6. Find the exact length of the polar curve $r=3~\sin\,\theta$ from $0\leq\theta\leq\pi/3$