Exam 5

Homework Key for Section 1

1. Sketch $x=1+\sqrt{t}, \quad y=t^{2}-4 t, \quad 0 \leq t \leq 5$
2. Sketch $x=t^{2}-2, \quad y=5-2 t, \quad-3 \leq t \leq 4$ and eliminate the parameter to find a Cartesian equation.

$$
x=\frac{1}{4}(5-y)^{2}-2
$$

3. Eliminate the parameter and sketch $x=\sin \theta, y=\cos \theta, \quad 0 \leq \theta \leq \pi$

$$
x^{2}+y^{2}=1, \quad x \geq 0
$$

4. Describe the motion of $x=5 \sin t, \quad y=2 \cos t, \quad-\pi \leq t \leq 5 \pi$
moves three times clockwise around the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$

Homework Key for Section 2

1. Find an equation of the tangent line to $x=t^{4}+1, y=t^{3}+4$ at $t=-1$

$$
y-3=-3 / 4(x-2)
$$

2. Find an equation of the tangent line to $x=e^{\sqrt{t}}, y=t-\ln t^{2}$ at $t=1$

$$
y=-\frac{2 x}{e}+3
$$

3. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for the following as well as when the curves are CU.
(a) $x=4+t^{2}, \quad y=t^{2}+t^{3}$

$$
1+\frac{3}{2} t, \frac{3}{4 t}, t>0
$$

(b) $x=t-e^{t}, \quad y=t+e^{-t}$

$$
-e^{-t}, \frac{e^{-t}}{1-e^{t}}, t<0
$$

4. SET UP ONLY the integral that represents the length of

$$
\begin{gathered}
x=t-t^{2}, \quad y=4 / 3 t^{3 / 2}, \quad 1 \leq t \leq 2 \\
\int_{1}^{2} \sqrt{1+4 t^{2}} d t
\end{gathered}
$$

5. Find the exact length of $x=1+3 t^{2}, \quad y=4+2 t^{3}, \quad 0 \leq t \leq 1$

$$
4 \sqrt{2}-2
$$

6. Find the exact length of $x=e^{t} \cos t, \quad y=e^{t} \sin t, \quad 0 \leq t \leq \pi$

$$
\sqrt{2}\left(e^{\pi}-1\right)
$$

7. Find the surface area by rotating $x=a \cos ^{3} \theta, \quad y=a \sin ^{3} \theta, \quad 0 \leq \theta \leq \pi / 2$ about the x-axis.

$$
\frac{6}{5} \pi a^{2}
$$

Homework Key for Section 3

1. Sketch the following region: $5 \pi / 3 \leq \theta \leq 7 \pi / 3$ for $2<r<3$
2. Identify by finding a Cartesian equation for $r=2$
circle centered at the origin of radius 2
3. Identify by finding a Cartesian equation for $r=3 \sin \theta$
circle centered at $(0,3 / 2)$ with radius $3 / 2$
4. Find a polar equation for the following:
(a) $x=3$

$$
r=3 \sec \theta
$$

(b) $x^{2}+y^{2}=2 c x$

$$
r=2 c \cos \theta
$$

5. Sketch the following:
(a) $r=\sin \theta$
(b) $r=2(1-\sin \theta), \quad \theta \geq 0$
(c) $r=\theta, \quad \theta \geq 0$
6. Find the slope of the tangent line to $r=2 \sin \theta$ at $\theta=\pi / 6$

$$
\sqrt{3}
$$

7. Find the slope of the tangent line to $r=1 / \theta$ at $\theta=\pi$

$$
-\pi
$$

8. Find the slope of the tangent line to $r=\cos 2 \theta$ at $\theta=\pi / 4$
9. Find the points on $r=3 \cos \theta$ where the tangent line is horizontal or vertical.

$$
\text { horizontal at }(3 / \sqrt{2}, \pi / 4),(-3 / \sqrt{2}, 3 \pi / 4) \text { vertical at }(3,0),(0, \pi / 2)
$$

Homework Key for Section 4

1. Find the area of the region bounded by $r=\sin \theta$ on $\pi / 3 \leq \theta \leq 2 \pi / 3$

$$
\frac{\pi}{12}+\frac{\sqrt{3}}{8}
$$

2. Sketch $r=3 \cos \theta$ and find the area it encloses.

$$
\frac{9 \pi}{4}
$$

3. Find the area enclosed by ONE loop of $r=\sin 2 \theta$

$$
\frac{\pi}{8}
$$

4. Find the area that lies inside $r=3 \cos \theta$ and outside $r=1+\cos \theta$

$$
\pi
$$

5. Find the area that lies in both $r=\sqrt{3} \cos \theta$ and $r=\sin \theta$

$$
\frac{5 \pi}{24}-\frac{\sqrt{3}}{4}
$$

6. Find the exact length of the polar curve $r=3 \sin \theta$ from $0 \leq \theta \leq \pi / 3$
