
MATH 151 Exam 6 Notes Spring

ex 1 For what values of x does the following series converge?

1 Power Series

A Power Series is a series of the following form:

∞∑
n=0

cnx
n = c0 + c1x + c2x

2 + c3x
3 + . . .

where the cn’s are the coefficients of the series and x is the variable

• for each fixed x we can test the series for C or D •

The sum of the series is a function

f (x) = c0 + c1x + c2x
2 + . . .

whose domain is the set of all x for which the series converges. Here f

is a polynomial with infinitely many terms.

More generally, a series of the form

∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + . . .

is a Power Series centered at a

We can check for which values of x the series converges by using the



Ratio or Root Test

∞∑
n=1

(x− 3)n

n

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(x− 3)n+1

n + 1

n

(x− 3)n

∣∣∣∣ =

lim
n→∞

1

1 + 1
n

| x− 3 | = | x− 3 | as n −→ ∞

Thus the series is AC when | x− 3 | < 1 and D when | x− 3 | > 1

So,

| x− 3 | < 1 =⇒ − 1 < x− 3 < 1 =⇒ 2 < x < 4

Recall that the ratio and root tests give no information when the limit

equals one so we MUST check the endpoints. That is what happens

when | x− 3 | = 1



Consider x = 2 and x = 4 separately:

when x = 4 =⇒
∞∑
n=1

1

n
=⇒ the series is a divergent harmonic

when x = 2 =⇒
∞∑
n=1

(−1)n

n
=⇒ the series converges

by the alternate series test

Therefore the power series converges for 2 ≤ x < 4

Theorem

For the given power series

∞∑
n=0

cn(x− a)n only ONE of the following is

true:

1. the series converges only when x = a

2. the series converges for all x

3. there exists a positive number R such that if | x − a | < R the

series converges and if | x− a | > R the series diverges

R is called the radius of convergence



So in case (1) R = 0 and in case (2) R =∞

the interval of convergence, I, is the interval containing all the

values of x for which the series converges

from the previous example, ex 1, I = [2, 4) and R = 1

ex 2 Find I and R for
∞∑
n=0

(−1)n(x + 1)n

2n



lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = . . . = lim
n→∞

∣∣∣∣ x + 1

2

∣∣∣∣ < 1 ⇐⇒ | x+1 | < 2 =⇒ R = 2

The interval is (−3, 1) but we still need to check the endpoints

when x = −3 =⇒
∑

1 =⇒ the series diverges

when x = 1 =⇒
∑

(−1)n =⇒ the series diverges

Thus I = (−3, 1)



Worksheet for Section 1

1. Find the radius of convergence and interval of convergence of the

series.

(a)

∞∑
n=0

(−1)nxn

n + 1

(b)

∞∑
n=1

xn

5nn5



Homework for Section 1

1. Solve the following:

(a)

∫
arctan 4t dt

(b)

∫ π

0

t sin 3t dt

(c)

∫ π/2

0

sin2 x cos2 x dx

2. Find the radius of convergence, R, and the interval of convergence,

I , for the following:

(a)

∞∑
n=1

xn√
n

(b)

∞∑
n=1

(−1)n−1
xn

n3

(c)

∞∑
n=0

xn

n!

(d)

∞∑
n=1

(−1)n
n2xn

2n

(e)

∞∑
n=1

(−2)nxn

4
√
n



2 Representing Functions as a Power Series

We will learn how to represent a function as a power series by manip-

ulating a geometric series

So, recall that

∞∑
n=0

xn = 1 + x + x2 + x3 + . . . =
1

1− x
when | x | < 1

ex 3 Express
1

1 + x2

as a power series

1

1 + x2
=

1

1− (−x2)
=

∞∑
n=0

(−x2)n =

∞∑
n=0

(−1)nx2n

This geometric series converges ⇐⇒ | − x2| < 1 ⇐⇒ x2 <

1 ⇐⇒ | x | < 1

=⇒ I = (−1, 1)

ex 4 Express
1

x + 2
as a power series

1

2 + x
=

1

2
(
1 + x

2

) =
1

2
(
1−

(
−x

2

)) =
1

2

∞∑
n=0

(
−x

2

)n
=

∞∑
n=0

(−1)nxn

2n+1



This converges

⇐⇒
∣∣∣− x

2

∣∣∣ < 1

⇐⇒ | x | < 2

=⇒ I = (−2, 2)

Representations like this allow for term by term differentiation

and integration

Theorem

If the power series
∑

cn(x − a)n has a radius of convergence R > 0

then f (x) =
∑

cn(x− a)n

is differentiable, and therefore continuous, on (a−R, a + R) and

1. f ′(x) =
∑

ncn(x− a)n−1

2.

∫
f (x) dx = C +

∑
cn

(x− a)n+1

n + 1

Where R is the radius of convergence for both (1) and (2) but I may

change (you need to check)

ex 5 Find a power series representation for ln (1 − x) and the radius

of convergence

Note that
d

dx
[ln (1− x)] =

−1

1− x



So

−ln (1−x) =

∫
1

1− x
dx =

∫
(1+x+x2+ . . .) dx = x+

x2

2
+
x3

3
+ . . . +C

=

∞∑
n=0

xn+1

n + 1
+ C therefore − ln (1− x) =

∞∑
n=0

xn+1

n + 1
+ C

=⇒ ln (1−x) = −
∞∑
n=1

xn

n
+C when | x | < 1 (note the change in bounds)

To find C let x = 0 and get −ln 1 = C =⇒ C = 0 thus R = 1

ex 6 Evaluate ∫
1

1 + x7
dx

Now we can do this by representing the integrand as a power series

and integrating term by term. This will only be an approximation of

course.



Worksheet for Section 2

1. Find a power series representation for the function and determine

the interval of convergence.

(a)

f (x) =
3

1− x4
(b)

f (x) =
x

4x + 1

2. Find a power series representation for f (x) = ln(3 + x)



Homework for Section 2

1. Solve the following:

(a)

∫ π/3

0

tan5 x sec4 x dx

(b)

∫
tan3 θ

cos4 θ
dθ

(c)

∫ 1

0

x
√
x2 + 4 dx

(d)

∫
x2 − 5x + 16

(2x + 1)(x− 2)2
dx

2. Find a power series representation for the following:

(a)

f (x) =
1

1 + x

(b)

f (x) =
x

9 + x2

3. Find a power series representation for f (x) = ln(5− x) and R.

4. Evaluate

∫
t

1− t8
dt as a power series and find R.

5. Use a power series to approximate

∫ 0.2

0

1

1 + x5
dx to six decimal

places



3 Taylor and Maclaurin Series

Recall that a power series can be expressed as

f (x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + . . .

Let’s find the coefficients in terms of the function f

f (a) = c0 since all the other factors are 0

f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + . . . =⇒ f ′(a) = c1

f ′′(x) = 2c2+3·2c3(x−a)+3·4c4(x−a)2+ . . . =⇒ f ′′(a) = 2c2

f ′′′(x) = 2·3c3+2·3·4c4(x−a)+3·4·5c5(x−a)2+ . . . =⇒ f ′′′(a) = 2·3c3 = 3!c3
...

In general:

f (n)(a) = n!cn =⇒ cn =
f (n)(a)

n!

So, if f has a power series expansion at a,

f (x) =

∞∑
n=0

f (n)(a)

n!
(x−a)n = f (a)+

f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2+ . . .

This is called theTaylor Series of f at a or centered at a

When a = 0, this is called a Maclaurin Series



ex 7 Find the Maclaurin Series for the function f (x) = ex and the

radius of convergence R

f (x) = ex =⇒ f (n)(x) = ex ∀ x =⇒ f (n)(0) = e0 = 1 ∀ n

Thus
∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

xn

n!
= 1 +

x

1!
+
x2

2!
+
x3

3!
+ . . .

R = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

| x |
n + 1

= 0 < 1 always =⇒ R =∞

Note that:

A function is equal to its Taylor Series if

f (x) = lim
n→∞

Tn(x)

where Tn(x) is the nth degree Taylor polynomial of f at a

Tn(x) =

n∑
i=0

f (i)(a)

i!
(x− a)i

So f (x) ≈ Tn(x) and T1(x) = f (a) + f ′(a)(x− a)

is the same as the linearization of f



Let f (x) = ex and let’s look at T1(x), T2(x) and T3(x):

T1(x) = 1 + x

T2(x) = 1 + x +
x2

2

T3(x) = 1 + x +
x2

2
+
x3

6

Note that the more terms you use the better the approximation. Why

do you think that is?



Also

Tn(x) =

n∑
i=0

f (i)(a)

i!
(x− a)i

ex 8 Find T3(x) for f (x) = ex

So

T3(x) =

3∑
i=0

f (i)(a)

i!
(x− a)i = 1 + x +

x2

2!
+
x3

3!

that is ex ≈ 1 + x +
x2

2!
+
x3

3!

This polynomial approximates f (x) = ex extremely well. Why? Think

derivatives.

ex 9 Find the Maclaurin Series for f (x) = cos x

f (x) = cos x f (0) = 1

f ′(x) = −sin x f ′(0) = 0

f ′′(x) = −cos x f ′′(0) = −1

f ′′′(x) = sin x f ′′′(0) = 0

f (4)(x) = cos x f (4)(0) = 1

So

cos x = f (0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + . . .



= 1− x2

2!
+
x4

4!
− x6

6!
+ . . . =

∞∑
n=0

(−1)n
x2n

(2n)!

You will need to know the following Maclaurin Series:

1

1− x
=

∞∑
n=0

xn = 1+x+x2+x3+ . . . R = 1

ex =

∞∑
n=0

xn

n!
= 1+

x

1!
+
x2

2!
+
x3

3!
+ . . . R =∞

sin x =

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
= x−x

3

3!
+
x5

5!
−x

7

7!
+ . . . R =∞

cos x =

∞∑
n=0

(−1)n
x2n

(2n)!
= 1−x

2

2!
+
x4

4!
−x

6

6!
+ . . . R =∞

tan−1 x =

∞∑
n=0

(−1)n
x2n+1

2n + 1
= x−x

3

3
+
x5

5
−x

7

7
+ . . . R = 1

ex 10 Evaluate the following integral to within .001∫ 1

0

e−x
2
dx

So

e−x
2

=

∞∑
n=0

(−x2)n

n!
=

∞∑
n=0

(−1)n
x2n

n!
= 1−x

2

1!
+
x4

2!
−x

6

3!
+ . . . =⇒

∫ 1

0

e−x
2
dx =

∫ 1

0

(
1− x2

1!
+
x4

2!
− x6

3!
+ . . .

)
dx



=

[
x− x3

3 · 1!
+

x5

5 · 2!
− x7

7 · 3!
+

x9

9 · 4!
− . . .

]1
0

= 1− 1

3
+

1

10
− 1

42
+

1

216
− . . . ≈ .7475

Note that we stopped at 1/216 since the next term was 1/1320 < .001



Worksheet for Section 3

1. Find the Taylor series for f (x) = ln x at a = 2.

2. Evaluate

∫
sin x

x
dx as an infinite series.



Homework for Section 3

1. Find the Taylor Polynomial, Tn(x), for the following functions at

the given value a.

(a) f (x) = 1
x , a = 2

(b) f (x) = cos x , a = π/2

2. Approximate f (x) =
√
x by a Taylor polynomial of degree 2 at

a = 4.

3. Find the Maclaurin series as well as R for the following:

(a) f (x) = (1− x)−2

(b) f (x) = e5x

4. Find the Taylor series representation for f (x) = ex centered at

a = 3.

5. Evaluate

∫
x cos(x3) dx as an infinite series.
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