Worksheet for Section 1

1. For the given function, state the value of each quantity, if it exists. If it does not exist, explain why.
(a) $\lim _{x \rightarrow 2^{-}} g(x)=\frac{1}{2}$
(b) $\lim _{x \rightarrow 2^{+}} g(x)=\frac{3}{2}$
(c) $\lim _{x \rightarrow 2} g(x)$ DNE
(d) $g(2)=\frac{3}{2}$
(e) $\lim _{x \rightarrow 4^{-}} g(x)=\frac{3}{2}$
(f) $\lim _{x \rightarrow 4^{+}} g(x)$ DNE $(-\infty)$
2. Determine the infinite limit $\lim _{x \rightarrow 5^{+}} \ln (x-5)$
inside the parentheses are small positive numbers $\Longrightarrow-\infty$
3. Use a table of values to estimate the value of $\lim _{x \rightarrow 0} \frac{9^{x}-5^{x}}{x}$

Worksheet for Section 2

1. Determine the limit if it exists $\lim _{x \rightarrow-4} \frac{x^{2}+5 x+4}{x^{2}+3 x-4}$

$$
\lim _{x \rightarrow-4} \frac{(x+4)(x+1)}{(x+4)(x-1)}=\lim _{x \rightarrow-4} \frac{x+1}{x-1}=\frac{3}{5}
$$

2. Find $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$ if it exists. If it does not exist, explain why.

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}} \frac{|x-2|}{x-2}= & \lim _{x \rightarrow 2^{+}} \frac{x-2}{x-2}=1 \quad \text { for } x>2 \\
\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x-2}= & \lim _{x \rightarrow 2^{-}} \frac{-(x-2)}{x-2}=-1 \quad \text { for } x<2 \\
& \Longrightarrow D N E
\end{aligned}
$$

3. Show by means of an example that $\lim _{x \rightarrow a}[f(x) g(x)]$ may exist even though neither $\lim _{x \rightarrow a} f(x)$ nor $\lim _{x \rightarrow a} g(x)$ exists.

$$
\begin{gathered}
\text { answers may vary but look at } \\
f(x)=\left\{\begin{array}{ll}
0, & x<0 \\
1, & x \geq 0
\end{array} \text { and } g(x)= \begin{cases}1, & x<0 \\
0, & x \geq 0\end{cases} \right. \\
\left.\lim _{x \rightarrow 0} f(x) \text { DNE and } \lim _{x \rightarrow 0} g(x) \text { DNE but } \lim _{x \rightarrow 0} f(x) g(x)\right]=0
\end{gathered}
$$

Worksheet for Section 3

1. Use a graph of $f(x)=1 / x$ to find a number δ such that $\left|\frac{1}{x}-0.5\right|<0.2$ whenever $|x-2|<\delta$.

$$
\text { on the left side we need }|x-2|<\left|\frac{10}{7}-2\right|=\frac{4}{7}
$$ on the right side we need $|x-2|<\left|\frac{10}{3}-2\right|=\frac{4}{3}$ since we need the smaller number $\delta=\frac{4}{7}$ or anything smaller

2. Prove, using the δ, ϵ definition of a limit, that $\lim _{x \rightarrow-2}\left(\frac{1}{2} x+3\right)=2$
we need $|f(x)-L|<\epsilon$, that is, $\left|\frac{1}{2} x+3-2\right|=\left|\frac{1}{2} x+1\right|=\left|\frac{1}{2}\right||x+2|<\epsilon$ so choose $\delta=2 \epsilon$
Proof:

$$
\begin{aligned}
\text { given } \epsilon>0, \text { choose } \delta & =2 \epsilon \text { if }|x+2|<\delta \\
\left|\frac{1}{2} x+3-2\right|=\left|\frac{1}{2} x+1\right| & \Longrightarrow \\
\text { thus }|x+2|<\delta \Longrightarrow & \Longrightarrow
\end{aligned}
$$

Worksheet for Section 4

1. Show that $f(x)$ is continuous on $(-\infty, \infty)$.

$$
f(x)= \begin{cases}x^{2}, & x<1 \\ \sqrt{x}, & x \geq 1\end{cases}
$$

x^{2} is a polynomial so $\Longrightarrow f$ is continuous on $(-\infty, 1)$
\sqrt{x} is a root function so $\Longrightarrow f$ is continuous on $(1, \infty)$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{2}=1$ and $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \sqrt{x}=1$
since $f(1)=\sqrt{1}=1 \quad \Longrightarrow \quad f$ is continous on $(-\infty, \infty)$
2. Why is the following function discontinuous at $a=1$?

$$
\begin{aligned}
g(x) & = \begin{cases}\frac{x^{2}-x}{x^{2}-1}, & x \neq 1 \\
1, & x=1\end{cases} \\
\lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1} \frac{x^{2}-x}{x^{2}-1}=1 & =\lim _{x \rightarrow 1} \frac{x(x-1)}{(x+1)(x-1)}=\lim _{x \rightarrow 1} \frac{x}{x+1}=\frac{1}{2} \\
\text { since } f(1)=1 & \Longrightarrow f \text { is discontinous at } x=1
\end{aligned}
$$

3. Is there a number that is exactly one more than its cube?
if so then $x^{3}+1=x \Longrightarrow x^{3}-x+1=0$ is continuous on $(-\infty, 1)$
note that $f(-2)=-5$ and $f(-1)=1$
f is a polynomial so continuous everywhere.
By the IVT \exists a c between -2 and -1 such that $f(c)=0$

Worksheet for Section 5

1. Sketch a graph of a function that satisfies the following conditions:
(a) $\lim _{x \rightarrow-2} f(x)=\infty$
(b) $\lim _{x \rightarrow-\infty} f(x)=3$
(c) $\lim _{x \rightarrow \infty} f(x)=-3$
answers may vary slightly here
2. Find $\lim _{x \rightarrow \infty} \frac{x^{3}-2 x+3}{5-2 x^{2}}$

$$
\lim _{x \rightarrow \infty} \frac{\frac{x^{3}}{x^{2}}-\frac{2 x}{x^{2}}+\frac{3}{x^{2}}}{\frac{5}{x^{2}}-\frac{2 x^{2}}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{x}{-2}=-\infty
$$

3. Find $\lim _{x \rightarrow \infty} \tan ^{-1}\left(x^{2}-x^{4}\right)$

$$
\lim _{x \rightarrow \infty} \tan ^{-1}\left(x^{2}\left(1-x^{2}\right)\right)
$$

$$
\text { note that as } x \rightarrow \infty x^{2}\left(1-x^{2}\right)=\infty(-\infty)=-\infty \quad \Longrightarrow \quad-\frac{\pi}{2}
$$

Worksheet for Section 6

1. If a ball is thrown into the air with a velocity of $40 \mathrm{ft} / \mathrm{s}$, its height, in feet, after t seconds is given by $y=40 t-16 t^{2}$. Find the average velocity from $t=1$ to $t=2$ as well as the velocity when $t=2$.

$$
\begin{gathered}
V_{\text {avg }} \frac{s(2)-s(1)}{2-1}=-8 \mathrm{ft} / \mathrm{sec} \\
v(2)=\lim _{t \rightarrow 2} \frac{s(t)-s(2)}{t-2}=\lim _{t \rightarrow 2} \frac{40 t-16 t^{2}-16}{t-2}=\lim _{t \rightarrow 2} \frac{-8(t-2)(2 t-1)}{t-2} \\
=-8 \lim _{t \rightarrow 2}(2 t-1)=-24 \mathrm{ft} / \mathrm{sec}
\end{gathered}
$$

2. Find $f^{\prime}(a)$ if

$$
\begin{gathered}
f(x)=\frac{1}{\sqrt{x+2}} \\
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{a+h+2}}-\frac{1}{\sqrt{x+2}}}{h}=\lim _{h \rightarrow 0} \frac{\frac{\sqrt{a+2}-\sqrt{a+h+2}}{\sqrt{a+h+2} \sqrt{a+2}}}{h} \\
=\lim _{h \rightarrow 0}\left[\frac{\sqrt{a+2}-\sqrt{a+h+2}}{h \sqrt{a+h+2} \sqrt{a+2}} \cdot \frac{\sqrt{a+2}+\sqrt{a+h+2}}{\sqrt{a+2}+\sqrt{a+h+2}}\right] \\
=\lim _{h \rightarrow 0} \frac{-h}{h \sqrt{a+h+2} \sqrt{a+2}(\sqrt{a+2}+\sqrt{a+h+2})}=\frac{-1}{(\sqrt{a+2})^{2} 2(\sqrt{a+2})}=-\frac{1}{2(a+2)^{3 / 2}}
\end{gathered}
$$

3. Given that

$$
\lim _{h \rightarrow 0} \frac{\cos (\pi+h)+1}{h}
$$

represents $f^{\prime}(a)$, what is the function f and the number a ?

$$
f(x)=\cos x \text { and } a=\pi \quad \Longrightarrow \quad f^{\prime}(\pi)=\lim _{h \rightarrow 0} \frac{\cos (\pi+h)+1}{h}
$$

or

$$
f(x)=\cos (\pi+x) \text { and } a=0 \quad \Longrightarrow \quad f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\cos (\pi+h)+1}{h}
$$

Worksheet for Section 7

1. Make a careful sketch of $f(x)=\sin x$ and below it sketch $f^{\prime}(x)$ thinking slopes. What is $f^{\prime}(x)$?
answers may vary slightly here but the sketch should look like $f^{\prime}(x)=\cos x$
2. Using the DEFINITION of the derivative, find $g^{\prime}(x)$ if $g(x)=\frac{1}{x^{2}}$

$$
\begin{aligned}
& g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h}=\lim _{h \rightarrow 0} \frac{x^{2}-(x+h)^{2}}{h(x+h)^{2} x^{2}} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}-\left(x^{2}+2 x h+h^{2}\right)}{h(x+h)^{2} x^{2}}=\lim _{h \rightarrow 0} \frac{-2 x-h}{(x+h)^{2} x^{2}}=\frac{-2 x}{x^{4}}=-2 x^{-3}
\end{aligned}
$$

