
MATH 151 Exam 3 Notes Spring

1 Series

A series or infinite series is when you add the terms of an infinite

sequence. That is,

a1 + a2 + a3 + . . . + an + . . .

which is denoted

∞∑
n=1

an

or ∑
an

ex 1

1 + 2 + 3 + . . . = ?

ex 2 How about

1

2
+

1

4
+

1

8
+ . . . +

1

2n
+ . . .

If you add the first 2 terms you get 3
4

If you add the first 3 terms you get 7
8

If you add the first 5 terms you get 31
32

It sure seems like ∑ 1

2n
= 1

• This is the basic idea of how to determine if a series has a sum



Let’s consider what are called partial sums

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

and in general

sn = a1 + a2 + . . . + an =

n∑
i=1

ai

these partial sums form a NEW SEQUENCE that may or may not have

a limit

If

lim
n→∞

sn = s

exists as a finite number then s is the sum of the infinite series∑
an

so a1, a2, a3, . . . is a sequence

a1 + a2 + a3 + . . . =
∑

an is a series

sn =

n∑
i=1

ai = a1 + a2 + . . . + an is the series’s nth partial sum



the sequence {sn} = s1, s2, s3, . . . is a sequence of partial sums

Definition

If the sequence {sn} is convergent and

lim
n→∞

sn = s

exists as a real number, then the series∑
an

is convergent and ∑
an = s

Otherwise the series is divergent.

∑
an = s

means that by adding sufficiently many terms of the series, we can get

as close as we like to s. Sound familiar?

One particular type of series is called a geometric series

That is,

a + ar + ar2 + ar3 + . . . + arn−1 + . . . =

∞∑
n=1

arn−1

provided a 6= 0

each term is obtained from the preceding one by multiplying by a com-

mon ratio r.

If r = 1 then the series diverges.



If −1 < r < 1, then

sn = a + ar + ar2 + . . . + arn−1 (1)

multiplying both sides by r yields

rsn = ar + ar2 + . . . + arn−1 + arn (2)

subtracting (2) from (1) gives us

sn − rsn = a− arn

since the middle terms cancel each other out

thus

sn =
a(1− rn)

1− r
and

lim
n→∞

sn =
a

1− r
so for a geometric series

∑
arn−1 =

{
C, if | r | < 1

D, if | r | ≥ 1

If the geometric series converges then its sum is∑
arn−1 =

a

1− r

Geometric Series are one of the few types of series where if they

converge you can actually calculate the sum. This is usually NOT the

case.



ex 3 converge or diverge? ∑ 3

2n−1∑ 3

2n−1
=
∑

3

(
1

2

)n−1
where r = 1

2 and a = 3

Thus this sum converges to

3

1− 1
2

= 6

ex 4 How about

1 +
3

2
+

9

4
+

27

8
+ . . .

Here a = 1 and r = 3
2 so the series diverges

ex 5 Find the sum of ∑ 2

4n2 − 1

Using partial fractions we get that

2

4n2 − 1
=

1

2n− 1
− 1

2n + 1

so

sn =

(
1

1
− 1

3

)
+

(
1

3
− 1

5

)
+

(
1

5
− 1

7

)
+ . . . +

(
1

2n− 1
− 1

2n + 1

)
= 1 − 1

2n + 1
=⇒ lim

n→∞
sn = 1



This type of series is called a Telescoping Series since the series

collapses to only a few terms.

This is the other type of series where not only convergence or diver-

gence is possible but also the sum.

Use this to your advantage. If the directions say to find

the actual sum what does that mean?

ex 6 converge or diverge? ∑ 1

n

This is an example of a harmonic series

Theorem

If the series
∑

an is convergent, then limn→∞ an = 0

Note that with any series you actually get 2 sequences

1. {sn} which is the sequence of partial sums and

2. {an} which is the sequence of terms

Hopefully this makes sense. If a sum converges you must be adding

very small pieces as n → ∞, thus limn→∞ (terms) = 0

Another way to think about this is the contrapositive, that is the Test

for Divergence

If limn→∞ an DNE or limn→∞ an 6= 0 =⇒
∑

an diverges



BE CAREFUL!!

If limn→∞ an = 0 what does that say about
∑

an? NOTHING!

lim
n→∞

1

2n
= 0 and

∑ 1

2n
converges to 1

lim
n→∞

1

n
= 0 but

∑ 1

n
diverges

ex 7 converge or diverge? ∑ n2

5n2 + 4

Note that

lim
n→∞

an =
1

5
6= 0

Thus this sum diverges

Theorem

If
∑

an and
∑

bn are convergent then

1.
∑

c an = c
∑

an

2.
∑

(an − bn) =
∑

an −
∑

bn

3.
∑

(an + bn) =
∑

an +
∑

bn



Worksheet for Section 1

1. Find the sum of the series

∞∑
n=1

(
3

n(n + 1)
+

1

2n

)

2. Show that the series

∞∑
n=1

n2

n2 + 1
diverges.



Homework for Section 1

1. Determine whether the geometric series is C or D. If C, find the

sum.

(a) 3 + 2 + 4
3 + 8

9 + . . .

(b) 3− 4 + 16
3 −

64
9 + . . .

(c)

∞∑
n=1

(−3)n−1

4n

(d)

∞∑
n=0

πn

3n+1

2. Determine whether the series is C or D. If C, find the sum.

(a)

∞∑
n=2

n2

n2 − 1

(b)

∞∑
n=1

1 + 2n

3n

(c)

∞∑
n=1

n
√

2

(d)

∞∑
n=1

ln

(
n2 + 1

2n2 + 1

)

(e)

∞∑
n=1

arctan n

(f)

∞∑
n=1

(
1

en
+

1

n(n + 1)

)



3. Determine whether the telescoping series is C or D. If C, find the

sum.

(a)

∞∑
n=1

3

n(n + 3)

4. Find the values of x for which the series converges. Then find the

sum for those values.

(a)

∞∑
n=1

xn

3n

(b)

∞∑
n=0

4n xn

5. The Cantor Set is constructed as follows. Start with the closed

interval [0, 1] and remove the open interval (13,
2
3). That leaves the

two intervals [0, 13] and [23, 1]. Remove the open middle third of

each of those. Continue with this process indefinitely. The Can-

tor Set consists of those numbers that remain after this process,

0, 13,
2
3, 1, . . ..

(a) How many numbers are in the Cantor Set?

(b) Show that the total length of all of those numbers removed is

1.



2 The Integral Test

Usually it is very difficult if not impossible to determine the exact sum

of a series

These next few sections will develop several tests to check for con-

vergence or divergence without finding the sums

ex 8 Find ∑ 1

n2∑ 1

n2
=

1

12
+

1

22
+

1

32
+ . . .

There is no simple formula for the sum here

Consider the curve y = 1/x2

Sketch the graph as well as some rectangles whose widths are one and

heights are right endpoints. What do you notice?

Excluding the first rectangle, the area of the remaining rectangles is

LESS THAN the area under the curve y = 1/x2 for x ≥ 1

So, the partial sums are LESS THAN 1 +

∫ ∞
1

1/x2 dx = 2

=⇒
∑ 1

n2
< 2

In a similar fashion we can use the rectangles above a curve to show

divergence



So,

Integral Test

Suppose that f is a continuous, positive and decreasing function on

[1,∞). Then

1. If

∫ ∞
1

f (x) dx is convergent =⇒
∑

an is convergent.

2. If

∫ ∞
1

f (x) dx is divergent =⇒
∑

an is divergent.

Note that you do NOT have to start the series at n = 1

To test ∞∑
n=4

1

(n− 3)2

Use ∫ ∞
4

1

(x− 3)2
dx

ex 9 test ∑ n

n2 + 1

Look at ∫ ∞
1

x

x2 + 1
dx =

1

2

∫ ∞
1

1

u
du = . . . = ∞

thus the series diverges



ex 10 test ∑ 1

n2 + 1

Look at∫ ∞
1

1

x2 + 1
dx = . . . = arctan x = . . .

π

4
=⇒ C

Realize that the series does NOT equal π/4 we only know

that it converges

There is a special series called a p-series , that is
∑ 1

np∑ 1

np
=

{
C, if p > 1

D, if p ≤ 1

Again, the integral test does NOT tell you the sum only convergence

or divergence

∑ 1

n2
=

π2

6

However

∫ ∞
1

1

x2
dx = 1



ex 11 converge or diverge ∑ ln n

n

The function ln x
x is positive and continuous but is it decreasing?

Note that

f ′(x) =
1− ln x
x2

=⇒ f is decreasing for x > e

So the integral test yields∫ ∞
1

ln x

x
dx =

∫ ∞
1

u du = lim
t→∞

(ln t)2

2
= . . . = ∞

thus the series diverges



Worksheet for Section 2

1. Determine whether the series is convergent or divergent. If it is

convergent, find its sum.

(a)

∞∑
n=1

en

3n−1

(b)

∞∑
n=1

(n + 1)2

n(n + 2)

2. Determine whether the series is convergent or divergent.

(a)

∞∑
n=1

n

n4 + 1

(b)

∞∑
n=1

3n + 2

n(n + 1)



Homework for Section 2

1. Determine whether the series is C or D.

(a)

∞∑
n=1

1

(2n + 1)3

(b)

∞∑
n=1

ne−n

(c)

∞∑
n=1

2

n0.85

(d)

∞∑
n=1

5− 2
√
n

n3

(e)

∞∑
n=1

n2

n3 + 1

(f)

∞∑
n=1

1

n2 + 4

(g)

∞∑
n=2

1

n ln n



3 Comparison Tests

This is the exact same concept as what we covered before.

Comparison Test

Suppose that
∑

an and
∑

bn are series with positive terms

1. If
∑

bn is convergent AND an ≤ bn ∀ n =⇒
∑

an is

convergent

2. If
∑

bn is divergent AND an ≥ bn ∀ n =⇒
∑

an is

divergent

ex 12 Determine the convergence or divergence of∑ 1

2 + 3n

Obviously if you use the comparison theorem you will need a series to

compare the given one to.

For this example the given series looks a lot like...∑ 1

3n

Why pick this one?

Because it is a convergent geometric series. But now you need the

appropriate comparison. Since our series converges you need to make

sure that the given series is ≤ our convergent geometric series.



Since
1

2 + 3n
<

1

3n
=⇒

∑ 1

2 + 3n
converges

ex 13 Determine the convergence or divergence of∑ ln n

n

We did a similar problem previously. Note that

ln n

n
>

1

n
for n ≥ 3 =⇒

∑ ln n

n
diverges

Often a series closely resembles a p-series or a geometric series but

you are unable to determine the appropriate comparison.

ex 14 ∑ 1

2n − 1

Note that
1

2n − 1
>

1

2n

So here a straight comparison will not work. Under such circumstances

use the...



Limit Comparison Test

Suppose that
∑

an and
∑

bn are series with positive terms

If

lim
n→∞

an
bn

= c, with c > 0 and c a finite number

Then either BOTH series converge OR BOTH series diverge.

That is, BOTH do the same thing.

ex 15 Test ∑ √
n

n2 + 1

• LCT works very well comparing a messy algebraic series to a p-series

• when choosing a comparison series focus on the highest powers of n

in the top and bottom

Focus on ∑ √
n

n2
=
∑ 1

n3/2

Which is a convergent p-series

So

lim
n→∞

an
bn

= lim
n→∞

( √
n

n2 + 1

)(
n3/2

1

)
= lim

n→∞

n2

n2 + 1
= 1 =⇒ C



Given Series Comparison Series Conclusion∑ 1

3n2 − 4n + 5

∑ 1

n2
both converge

∑ 1√
3n− 2

∑ 1√
n

both diverge

∑ n2 − 10

4n5 + n3

∑ 1

n3
both converge

ex 16 Test ∑ 2n2 + 3n√
5 + n5

Compare with ∑ 2n2√
n5

=
∑ 2

n1/2

Which is a divergent p-series

So

lim
n→∞

an
bn

= lim
n→∞

(
2n2 + 3n√

5 + n5

)(
n1/2

2

)
= lim

n→∞

2n5/2 + 3n3/2

2
√

5 + n5

= lim
n→∞

2 + 3
n

2
√

5
n5

+ 1
= 1 =⇒ D



Worksheet for Section 3

1. Determine whether the series is convergent or divergent.

(a)

∞∑
n=1

ln n

n2

(b)

∞∑
n=1

ln

(
n

2n + 5

)

(c)

∞∑
n=1

cos2 n

n2 + 1

(d)

∞∑
n=1

1

1 +
√
n



Homework for Section 3

1. Determine whether the series converges or diverges.

(a)

∞∑
n=1

n

2n3 + 1

(b)

∞∑
n=1

n + 1

n
√
n

(c)

∞∑
n=1

cos2 n

n2 + 1

(d)

∞∑
n=1

n− 1

n 4n

(e)

∞∑
n=1

arctan n

n1.2

(f)

∞∑
n=1

2 + (−1)n

n
√
n

(g)

∞∑
n=1

1√
n2 + 1

(h)

∞∑
n=1

1 + 4n

1 + 3n

2. Suppose that
∑
an and

∑
bn are series with positive terms and∑

bn is convergent. Show that if

lim
n→∞

an
bn

= 0

then
∑
an is also convergent. Use this fact to show the following

converges:
∞∑
n=1

ln n

n3



3. Suppose that
∑
an and

∑
bn are series with positive terms and∑

bn is divergent. Show that if

lim
n→∞

an
bn

= ∞

then
∑
an is also divergent. Use this fact to show the following

diverges:
∞∑
n=2

1

ln n



4 Alternating Series

An alternating series is a series whose terms alternate parity, that is

alternate sign.

Alternating Series Test

If the alternating series∑
(−1)n−1 bn = b1 − b2 + b3 − b4 + . . . with bn > 0

satisfies:

1.

bn+1 < bn ∀ n

2.

lim
n→∞

bn = 0

then the series is convergent.

ex 17 Test the following series for convergence∑
(−1)n−1

1

n
= 1− 1

2
+

1

3
− 1

4
+ . . .

Since

1

n + 1
<

1

n
=⇒ bn+1 < bn

and

lim
n→∞

bn = lim
n→∞

1

n
= 0 =⇒ C



ex 18 Test the following series for convergence∑ (−1)n+1(n + 1)

n

This series passes condition (1), however

lim
n→∞

n + 1

n
= 1 6= 0 =⇒ D

ex 19 Test the following∑
(−1)n+1 n2

n3 + 1

Is
n2

n3 + 1
decreasing?

Consider f (x) =
x2

x3 + 1
=⇒

f ′(x) =
x(2− x3)
(x3 + 1)2

=⇒ f ′(x) < 0 on (
3
√

2,∞)

Also lim
n→∞

n2

n3 + 1
= 0 =⇒ C



Alternating Series Estimation Theorem

If s =
∑

(−1)n−1 bn is the sum of an alternating series that satisfies:

1. 0 ≤ bn+1 ≤ bn and

2. limn→∞ bn = 0

Then

| Rn | = | s− sn | ≤ bn+1

that is, the size of the error in the sum is LESS THAN the absolute

value of the first neglected term

ex 20 Find the error involved in approximating the following sum by

its first 6 terms. That is, find R6∑
(−1)n+1

(
1

n!

)
Using the preceding theorem we know that

| R6 | ≤ b7 and b7 =
1

7!
=

1

5040
≈ .0002

• BEWARE as this ONLY applies to alternating series that meet

the theorem’s conditions



Worksheet for Section 4

1. Test the series for convergence or divergence.

(a)

∞∑
n=1

(−1)n
2n

4n2 + 1

(b)

∞∑
n=1

(−1)n
√
n

1 +
√
n



Homework for Section 4

1. Determine whether the series is C or D.

(a)

∞∑
n=1

(−1)n−1

2n + 1

(b)

∞∑
n=1

(−1)n
3n− 1

2n + 1

(c)

∞∑
n=1

(−1)n+1 n2

n3 + 4

(d)

∞∑
n=2

(−1)n
n

ln n

(e)

∞∑
n=1

cos(nπ)

n3/4

2. Show that

∞∑
n=1

(−1)n+1

n6
is convergent. How many terms do you

need to add so that | error |< 0.00005?



5 Absolute Convergence

Definition

A series
∑

an is absolutely convergent if the series of absolute values,∑ ∣∣an∣∣ is convergent.

ex 21 Determine the type of convergence for the alternating harmonic

series ∑ (−1)n−1

n

The alternating harmonic series∑ (−1)n−1

n

satisfies the AST, the alternate series test, however

∑ ∣∣∣∣(−1)n−1

n

∣∣∣∣ =
∑ 1

n
=⇒ D

1.
∑

an is absolutely convergent, AC, if
∑

| an| converges

2.
∑

an is conditionally convergent, CC, if
∑

an converges

but
∑

| an| diverges



ex 22 Determine if the series is AC, CC or D∑ (−1)n√
n

by the AST −→ C

the absolute value of the series is a divergent p-series

=⇒ CC

ex 23 Determine if the series is AC, CC or D∑ (−1)n−1

n2

the absolute value of the series,
∑ ∣∣∣∣(−1)n−1

n2

∣∣∣∣ is a convergent p-series

=⇒ AC

Combining comparison tests and geometric series we derive 2 more

tests

The Ratio Test

This tests for absolute convergence

1. If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1 =⇒
∑

an is AC

2. If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1 or ∞ =⇒
∑

an is D

3. If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 =⇒ no conclusion



ex 24 Test ∑ n2 2n+1

3n

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

[
(n + 1)2

(
2n+2

3n+1

)(
3n

n2 2n+1

)]

= lim
n→∞

2(n + 1)2

3n2
=

2

3
=⇒ AC

ex 25 Test ∑ nn

n!

lim
n→∞

[
(n + 1)n+1

(n + 1)!

n!

nn

]
= lim

n→∞

[
(n + 1)n+1

n + 1

1

nn

]

= lim
n→∞

(n + 1)n

nn
= lim

n→∞

(
1 +

1

n

)n
= e =⇒ D



The Root Test

This works well with nth powers

1. If

lim
n→∞

n
√
| an | < 1 =⇒

∑
an is AC

2. If

lim
n→∞

n
√
| an | > 1 or ∞ =⇒

∑
an is D

3. If

lim
n→∞

n
√
| an | = 1 =⇒ no conclusion

ex 26 Test ∑ e2n

nn

lim
n→∞

n
√
| an | = lim

n→∞
n

√
e2n

nn
= lim

n→∞

e2

n
= 0 =⇒ AC

ex 27 Test ∞∑
n=2

(−1)n

(ln n)n

lim
n→∞

n

√∣∣∣∣ (−1)n

(ln n)n

∣∣∣∣ = lim
n→∞

n

√(
1n

(ln n)n

)
= lim

n→∞

1

ln n
= 0 =⇒ AC



Worksheet for Section 5

1. Determine whether the series is absolutely convergent, conditionally

convergent or divergent.

(a)

∞∑
n=0

(−10)n

n!

(b)

∞∑
n=1

(2n + 3)n

(3n + 2)n



Homework for Section 5

1. Determine whether the series is AC, CC or D.

(a)

∞∑
n=0

(−10)n

n!

(b)

∞∑
n=1

(−1)n+1

4
√
n

(c)

∞∑
n=1

(−1)ne1/n

n3

(d)

∞∑
n=1

10n

(n + 1)42n+1

(e)

∞∑
n=1

(−1)n arctan n

n2

(f)

∞∑
n=2

(−1)n

ln n

(g)

∞∑
n=1

(
n2 + 1

2n2 + 1

)n



6 Strategies

The following 5-step process might help when evaluating series:

1. Does limn→∞ an = 0? If not the series diverges.

2. Can you classify the series?

(a) Geometric ?

(b) Telescoping ?

(c) P-series ?

(d) Alternating ?

3. Is the associated function easy to integrate? Then use the Integral

Test.

4. Is the series of the form (an)n? Then use the Root Test.

5. Does the series involve factorials, constants to the nth power, prod-

ucts? Use the Ratio Test.



Let’s look at the following examples to identify the

appropriate test

1.
∑ n + 1

3n + 1
look at lim

n→∞
an −→ D

2.
∑ (π

6

)n
geometric −→ C

3.
∑

n e−n
2
integral test −→ C

4.
∑ 1

3n + 1
limit comparison test −→ D

5.
∑ (−1)n 3

4n + 1
alternating series −→ C

6.
∑ n!

10n
ratio test −→ D

7.
∑ (

n + 1

2n + 1

)n
root test −→ C



Worksheet for Section 6

1. Determine whether the series is absolutely convergent, conditionally

convergent or divergent.

(a)

∞∑
n=1

n− 1

2n + 1

(b)

∞∑
n=1

√
n3 + 1

3n3 + 4n2 + 2

(c)

∞∑
n=1

ne−n
2

(d)

∞∑
n=1

(−1)n
n3

n4 + 1

(e)

∞∑
k=1

2k

k!

(f)

∞∑
n=1

1

2 + 3n



Homework for Section 6

1. Determine whether the series is C or D.

(a)

∞∑
n=1

1

n + 3n

(b)

∞∑
n=1

(−1)n
n

n + 2

(c)

∞∑
n=1

n2 2n−1

(−5)n

(d)

∞∑
n=2

1

n
√
ln n

(e)

∞∑
n=1

n2 e−n

(f)

∞∑
n=1

3n n2

n!

(g)

∞∑
n=1

(−1)n21/n

(h)

∞∑
n=1

(−2)2n

nn

(i)

∞∑
n=1

n!

en2
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