
MATH 151 Exam 1 Notes Spring

1 Integration by Parts

Recall that integration and differentiation are related. How?

Each differentiation rule has a corresponding integration rule

chain rule for differentiation ←→ substitution for integration

product rule for differentiation ←→ integration by parts

Recall the Product Rule

d

dx
[f (x)g(x)] = f (x)g′(x) + g(x)f ′(x)

if we let u = f (x) and v = g(x) then

d

dx
[uv] = udv + vdu

integrating both sides gives us....

uv =

∫
u dv +

∫
v du

or

the formula for integration by parts:∫
u dv = uv −

∫
v du

or, using f (x) and g(x)



∫
f (x)g′(x) dx = f (x)g(x)−

∫
g(x)f ′(x) dx

ex 1 find ∫
x sin x dx

Since ∫
u dv = uv −

∫
v du

we need to choose both a u and a dv

the idea is to choose the u such that du gets ”easier”

So let u = x, then du = 1, which makes dv = sin x and v = −cos x

note that we can choose any antiderivative so just choose the sim-

plest one, that is let C = 0

thus ∫
x sin x dx = x(−cos x)−

∫
(−cos x) dx

= −x cos x +

∫
(cos x) dx

= −x cos x + sin x + C

if we had let u = sin x and dv = x dx, we would have gotten∫
x sin x dx =

x2

2
(sin x)− 1

2

∫
x2 cos x dx



which clearly is NOT easier.

ex 2 Evaluate ∫
ln x dx

So let u = ln x, then dv = dx, which makes du = 1/x dx and v = x

this gives us

. . .

∫
ln x dx = x ln x− x + C

Sometimes you may need to do parts twice...

ex 3 Evaluate ∫
x2 cos mx dx



So let u = x2, then dv = cos mx dx, which makes du = 2x dx and

v = 1/m sin mx

thus∫
x2 cos mx dx = 1/m x2 sin mx− 2/m

∫
x sin mx dx

Yes, this has gotten a little easier but we still need to evaluate

∫
x sinmx dx

so use parts again with U = x, then dV = sin mx dx, which makes

dU = dx and V = −1/m cos mx

therefore ∫
x2 cos mx dx

= 1/m x2 sin mx− 2/m[−1/m x cos mx + 1/m2 sin mx + C]

= 1/m x2 sin mx + 2/m2 x cos mx− 2/m3 sin mx + C

This next example shows one final technique for integration by parts.

You will notice that neither u or dv gets any easier but occasionally you

can perform parts twice and get back the original function. When this

happens you simply gather all the like terms, in this case the original

integral, back over to the left hand side and simplify.



Observe:

ex 4 Evaluate ∫
ex sin x dx

So let u = ex, then dv = sin x dx, which makes du = ex and

v = −cos x

so

(1)

∫
ex sin x dx = −ex cos x +

∫
ex cos x dx

now, just looking at

∫
ex cos x dx

let u = ex, then dv = cos x dx, which makes du = ex and v = sin x

so now we have

(2)

∫
ex cos x dx = ex sin x−

∫
ex sin x dx

and here you can see that we get back the original integral.

Combining (1) and (2) yields:∫
ex sin x dx = −ex cos x + ex sin x−

∫
ex sin x dx

or

2

∫
ex sin x dx = ex(sin x− cos x)



so it follows that

∫
ex sin x dx =

1

2
ex (sin x− cos x) + C

You can also use parts for Definite Integrals

∫ b

a

f (x)g′(x) dx = f (x)g(x)

∣∣∣∣∣
b

a

−
∫ b

a

g(x)f ′(x) dx



Worksheet for Section 1

1. Evaluate using integration by parts:

(a)

∫
θ sec2 θ dθ , let u = θ , dv = sec2 θ dθ

(b)

∫
x cos 5x dx

(c)

∫
rer/2 dr



Homework for Section 1

1. Evaluate the following:

(a)

∫
x2 ln x dx let u = ln x and dv = x2 dx

(b)

∫
x cos 5x dx

(c)

∫
x ex/2 dx

(d)

∫
x2 sin πx dx

(e)

∫
sin−1 x dx

(f)

∫
e2θ sin 3θ dθ

(g)

∫
cos x ln(sin x) dx



2 Trigonometric Integrals

2.1 Integrals of the type ∫
sinm x cosn x dx

ex 5 Evaluate ∫
sin3 x dx

Clearly substitution will not work here

to integrate cos x you need a sin x

to integrate sin x you need a cos x

using cos2x + sin2 x = 1 we have

∫
sin3 x dx =

∫
sin2 x sin x dx =

∫
(1− cos2 x)sin x dx

then let u = cos x and du = −sin x

so ∫
sin3 x dx = . . . = −cos x +

1

3
cos3 x + C

The idea is to write the integrand with either

1. One factor of sine and the rest cosine

or

2. One factor of cosine and the rest sine



ex 6 Evaluate ∫
sin5 x cos2 x dx

rewriting...∫
sin5 x cos2 x dx =

∫
(sin2 x)2 cos2 x sin x dx

then substitution yields:

−
∫

(1− u2)2 u2 du = . . . = −1

3
cos3 x +

2

5
cos5 x− 1

7
cos7 x + C

As long as you have odd powers the preceding strategy is great but

what if there are only even powers of sine and cosine?

Use the half-angle identities:

sin2x =
1

2
(1− cos 2x)

or

cos2x =
1

2
(1 + cos 2x)

ex 7 Find ∫
sin4 x dx

rewriting... ∫
sin4 x dx =

∫
(sin2 x)2 dx



and substituting the identities yields:∫ (
1− cos 2x

2

)2

dx =
1

4

∫
(1− 2 cos 2x + cos2 2x) dx = . . .

=
1

4

(
3

2
x− sin 2x +

1

8
sin 4x

)
+ C

So, the strategy for

∫
sinm x cosn x dx is:

1. If the power of cos x is odd, save one cos x and make the rest sin x

and let u = sin x

2. If the power of sin x is odd, save one sin x and make the rest

cos x and let u = cos x

3. If both have even powers then use the half-angle identities



2.2 Integrals of the type ∫
tanm x secn x dx

Here the strategy is slightly different and you will be using the identity:

sec2 x = 1 + tan2 x

or

tan2 x = sec2 x− 1

1. If the power of sec x is even, save a sec2 x and make the rest tan x

and let u = tan x

2. If the power of tan x is odd, save one sec x tan x and make the

rest sec x and let u = sec x

3. Otherwise, be creative

ex 8 Find ∫ π/4

0

sec4 θ tan4 θ dθ

rewriting...∫ π/4

0

sec4 θ tan4 θ dθ =

∫ π/4

0

(tan2 θ + 1)(tan4 θ)sec2 θ dθ

and using the substitution u = tan θ and du = sec2 θ dθ yields:∫ π/4

0

(u2 + 1)(u4) du = . . . =
12

35



Worksheet for Section 2

1. Evaluate the integral:

(a)

∫
sin6x cos3x dx

(b)

∫ π/2

0

cos2θ dθ

(c)

∫
tan4x dx



Homework for Section 2

1. Evaluate the following:

(a)

∫
sin3 x cos2 x dx

(b)

∫
sin6 x cos3 x dx

(c)

∫ π/2

0

cos2 θ dθ

(d)

∫
(1 + cos θ)2 dθ

(e)

∫
sec2 x tan x dx

(f)

∫
tan2 x dx

(g)

∫
tan3 x sec x dx



3 Trigonometric Substitution

Now we will use a slightly different kind of substitution called inverse

substitution

This method enables us to deal with integrals of the type∫ √
a2 − x2 dx

There are three kinds:

Expression Substitution and Restriction Identity
√
a2 − x2 x = a sin θ −π/2 ≤ θ ≤ π/2 1− sin2 θ = cos2 θ
√
a2 + x2 x = a tan θ −π/2 < θ < π/2 1 + tan2 θ = sec2 θ
√
x2 − a2 x = a sec θ 0 ≤ θ < π/2 sec2 θ − 1 = tan2 θ

* Think of this as using trig and the triangle as a substitution *

ex 9 Evaluate ∫ √
9− x2
x2

dx

If we let x = 3 sin θ then we have that dx = 3 cos θ dθ and

√
9− x2 =

√
9− 9 sin2 θ =

√
9 cos2 θ = 3 | cos θ | = 3 cos θ from

the restriction.

Why can we substitute this way?

Think of a right triangle whose opposite side is x, adjacent is
√

9− x2



and whose hypotenuse is 3...

So, inverse substitution yields:∫ √
9− x2
x2

dx =

∫
3 cos θ

9 sin2 θ
3 cos θ dθ

=

∫
cot2 θ dθ =

∫
(csc2 θ − 1) dθ

= −cot θ − θ + C = −
√

9− x2
x

− sin−1
(x

3

)
+ C

Note that we must return to the original x. We accomplish this by

revisiting our triangle that was created for the substitution.

ex 10 Evaluate ∫ 2

0

x3
√
x2 + 4 dx

If we let x = 2 tan θ then we have that dx = 2 sec2 θ dθ

also note that we can change the bounds at this point. When x = 0,

θ = 0 and when x = 2, tan θ = 1 so θ = π/4

Here we want to think of a right triangle whose opposite side is x,

adjacent is 2 and whose hypotenuse is
√
x2 + 4

So, inverse substitution yields:∫ 2

0

x3
√
x2 + 4 dx =

∫ π/4

0

23 tan3 θ
√

4 tan2 θ + 4 2 sec2 θ dθ

= 25
∫ π/4

0

tan3 θ sec θ sec2 θ dθ = 25
∫ π/4

0

(sec2 θ−1) sec2 θ sec θ tan θ dθ



and if we let u = sec θ and du = sec θ tan θ dθ then we have:

25
∫ π/4

0

(u4 − u2) du = . . . =
64

15

(√
2 + 1

)



Worksheet for Section 3

1. Evaluate the integral:

(a)

∫
1

x2
√
x2 − 9

dx ; x = 3 sec θ

(b)

∫ 2

√
2

1

t3
√
t2 − 1

dt



Homework for Section 3

1. Evaluate the following:

(a)

∫
1

x2
√
x2 − 9

dx x = 3 sec θ

(b)

∫
x3√
x2 + 9

dx x = 3 tan θ

(c)

∫ 2

√
2

1

x3
√
x2 − 1

dx

(d)

∫
1

x2
√

25− x2
dx

(e)

∫
dx√
x2 + 16

(f)

∫ √
1− 4x2 dx

(g)

∫
x√
x2 − 7

dx

(h)

∫ √
5 + 4x− x2 dx



4 Integration of Rational Functions using Partial Frac-

tions

It should be routine to recall how to combine

2

x− 1
− 1

x + 2
= . . . =

x + 5

x2 + x− 2

Partial fraction decomposition reverses this process...

Why bother with this? Then it will be possible to integrate things

like ∫
x + 5

x2 + x− 2
dx

= . . . =

∫
2

x− 1
dx−

∫
1

x + 2
dx

In other words we can now integrate Rational Functions

Before we begin, the rational function in question must be proper, that

is, the degree of the numerator must be less than the degree of the

denominator.

If not, then you need to divide. Sometimes this is all that is neces-

sary.

ex 11 Evaluate ∫
x3 + x

x− 1
dx



This is an improper rational function so division gives us...

x3 + x

x− 1
= x2 + x + 2 +

2

x− 1

thus

∫
x3 + x

x− 1
dx =

∫ (
x2 + x + 2 +

2

x− 1

)
dx

= . . . =
x3

3
+
x2

2
+ 2x + 2 ln | x− 1 | +C

The focus will be on the denominator of the rational function as it

must be factored as much as possible.

Fortunately there is a theorem that says ANY polynomial can be fac-

tored as a product of linear factors (ax + b) and irreducible quadratic

factors (ax2 + bx + c). As you may have guessed this will yield four

cases...



4.1 CASE I: Distinct Linear Factors

So, by the previous theorem there must exist constants

A1, A2, . . . , Ak

such that

R(x)

Q(x)
=

A1

a1x + b1
+

A2

a2x + b2
+ . . . +

Ak

akx + bk

ex 12 write the partial fraction decomposition of

1

x2 − 5x + 6
so,

Q(x) = x2 − 5x + 6 = (x− 3)(x− 2)

and we have two distinct linear factors

thus

1

x2 − 5x + 6
=

A

x− 3
+

B

x− 2

multiply both sides of the equation by Q(x) and get

1 = A(x− 2) + B(x− 3)

Now we have 2 options:

1. substitute values for x or



2. equate the coefficients

1. Since

1 = A(x− 2) + B(x− 3)

x = 3 =⇒ A = 1

x = 2 =⇒ B = −1

or

2. Since

1 = A(x− 2) + B(x− 3)

1 = (A + B)x− 2A− 3B

A + B = 0 =⇒ A = −B
also− 2A− 3B = 1 =⇒ A = 1 and B = −1

It depends on the problem as to which method is easier. The first

method usually works better on linear factors and the second usu-

ally works better with quadratic factors.

ex 13 Evaluate ∫
x2 + 2x− 1

2x3 + 3x2 − 2x
dx

so

x2 + 2x− 1

x(2x− 1)(x + 2)
=
A

x
+

B

2x− 1
+

C

x + 2



since we have 3 distinct linear factors. Expanding gives us

x2 + 2x− 1 = (2A + B + 2C)x2 + (3A + 2B − C)x− 2A

thus

2A + B + 2C = 1 =⇒ A =
1

2

3A + 2B − C = 2 =⇒ B =
1

5

−2A = −1 =⇒ C = − 1

10

therefore

∫
x2 + 2x− 1

2x3 + 3x2 − 2x
dx =

∫ [
1

2

1

x
+

1

5

1

2x− 1
− 1

10

1

x + 2

]
dx

= . . . =
1

2
ln | x | + 1

10
ln | 2x− 1 | − 1

10
ln | x + 2 | +C



4.2 CASE II: Repeated Linear Factors

Suppose that a linear factor, (a1x + b1) is repeated r times, that is,

(a1x + b1)
r is in the factorization of Q(x).

Then instead of
A1

a1x + b1
you will need

A1

a1x + b1
+

A2

(a1x + b1)2
+ . . . +

Ar

(a1x + b1)r

ex 14 Evaluate ∫
5x2 + 20x + 6

x3 + 2x2 + x
dx

so

x3 + 2x2 + x = x(x + 1)2

thus

5x2 + 20x + 6

x(x + 1)2
=
A

x
+

B

x + 1
+

C

(x + 1)2

and

5x2 + 20x + 6 = A(x + 1)2 + Bx(x + 1) + Cx

If x = 0 =⇒ A = 6

If x = −1 =⇒ C = 9



to find B use any other value of x along with A = 6 and C = 9

using x = 1 =⇒ 31 = 4A + 2B + C =⇒ B = −1

therefore∫
5x2 + 20x + 6

x3 + 2x2 + x
dx =

∫ [
6

x
− 1

x + 1
+

9

(x + 1)2

]
dx

= . . . = ln

∣∣∣∣ x6

x + 1

∣∣∣∣− 9

x + 1
+ C

NOTE:

you must make as many substitutions as there are unknowns with this

method. We used x = 0, 1 and 2.



4.3 CASE III: Distinct Linear and Irreducible Quadratic Factors

Now you will have a term of the type:

Ax + B

ax2 + bx + c

Also, you will need the following formula:∫
dx

x2 + a2
=

1

a
tan−1

(x
a

)
+ C

ex 15 Evaluate ∫
2x3 − 4x− 8

(x2 − x)(x2 + 4)
dx

so

(x2 − x)(x2 + 4) = x(x− 1)(x2 + 4)

thus

2x3 − 4x− 8

(x2 − x)(x2 + 4)
=
A

x
+

B

x− 1
+
Cx + D

x2 + 4

and

2x3 − 4x− 8 = A(x− 1)(x2 + 4) + Bx(x2 + 4) + (Cx + D)x(x− 1)

If x = 0 =⇒ A = 2

If x = 1 =⇒ B = −2

If x = −1, A = 2, B = −2 =⇒ C = 2

If x = 2, A = 2, B = −2 =⇒ D = 4



therefore∫
2x3 − 4x− 8

(x2 − x)(x2 + 4)
dx =

∫ [
2

x
− 2

x− 1
+

2x

x2 + 4
+

4

x2 + 4

]
dx

= . . . = 2 ln | x | −2 ln | x−1 | +ln (x2+4)+2 tan−1
(x

2

)
+C



4.4 CASE IV: Repeated Linear and Irreducible Quadratic Factors

If Q(x) has a factor (ax2 + bx+ c)r then the partial fraction decompo-

sition must have:

A1x + B1

ax2 + bx + c
+

A2x + B2

(ax2 + bx + c)2
+ . . . +

Arx + Br

(ax2 + bx + c)r

Case IV will require you to equate coefficients to solve

for the constants

ex 16 Evaluate ∫
8x3 + 13x

(x2 + 2)2
dx

so

8x3 + 13x

(x2 + 2)2
=
Ax + B

x2 + 2
+
Cx + D

(x2 + 2)2

and

8x3 + 13x = (Ax + B)(x2 + 2) + Cx + D

=⇒ 8x3 + 13x = Ax3 + Bx2 + (2A + C)x + (2B + D)

=⇒ A = 8

=⇒ B = 0

2A + C = 13 =⇒ C = −3

2B + D = 0 =⇒ D = 0



therefore∫
8x3 + 13x

(x2 + 2)2
dx =

∫ [
8x

x2 + 2
− 3x

(x2 + 2)2

]
dx

= . . . = 4 ln (x2 + 2) +
3

2(x2 + 2)
+ C

There are times when some non-rational functions can be changed into

rational functions by a clever substitution.

ex 17 Evaluate ∫ √
x + 4

x
dx

If we let u =
√
x + 4, then u2 = x + 4, x = u2 − 4 and dx = 2udu

thus ∫ √
x + 4

x
dx =

∫
u

u2 − 4
2u du =

after dividing the rational function

= 2

∫ [
1 +

4

u2 − 4

]
du

and then doing partial fractions on u2 − 4 = (u + 2)(u− 2) we get...

. . . 2u + 2(ln | u− 2 | −ln | u + 2 |) + C

= 2
√
x + 4 + 2(ln |

√
x + 4− 2 | −ln |

√
x + 4 + 2 |) + C



it is not always necessary to use partial fractions on all

rational functions

ex 18 Evaluate ∫
x2 + 1

x3 + 3x− 4
dx

=
1

3

∫
3x2 + 3

x3 + 3x− 4
dx =

∫
1

u
du

=
1

3
ln | x3 + 3x− 4 | +C

ex 19 Find ∫
x2 − x− 2

x3 − 2x− 4
dx

=

∫
(x + 1)(x− 2)

(x− 2)(x2 + 2x + 2)
dx =

∫
x + 1

x2 + 2x + 2
dx

=
1

2
ln | x2 + 2x + 2 | +C



Worksheet for Section 4

Section 4 Worksheet Case I/II

1. Evaluate the integral:

(a)

∫
x− 9

(x + 5)(x− 2)
dx

(b)

∫
1

(x + 5)2(x− 1)
dx



Section 4 Worksheet Case III/IV

1. Evaluate the integral:

(a)

∫
2x2 − x + 4

x3 + 4x
dx

(b)

∫
1− x + 2x2 − x3

x(x2 + 1)2
dx



Homework for Section 4

1. Evaluate the following:

(a)

∫
x

x− 6
dx

(b)

∫
x− 9

(x + 5)(x− 2)
dx

(c)

∫ 3

2

1

x2 − 1
dx

(d)

∫
1

(x + 5)2(x− 1)
dx

(e)

∫
5x2 + 3x− 2

x3 + 2x2
dx

2. Make a substitution to obtain a rational function and then evaluate

the following:

(a)

∫
1

x
√
x + 1

dx

(b)

∫
x3

3
√
x2 + 1

dx



5 Integration Strategies

If you do not immediately see how to integrate, try this 4 step process:

1. Simplify the integrand∫
(sin x+cos x)2 dx = . . . =

∫
(1+2 sin x cos x) dx = . . .

2. Look for the substitution ∫
x

x2 − 1
dx

Here partial fractions is NOT necessary

3. Try to classify the integrand:

(a) trig functions −→ use trig substitution

(b) rational functions −→ use partial fractions

(c) (polynomial)(transcendental) −→ use integration by parts

(d) radicals in the integrand −→ use trig substitution or clever

substitution (u =
√

stuff)

4. If all else fails just realize there are really only two methods: sub-

stitution and parts

(a) try a clever substitution or

(b) try integration by parts or

(c) try manipulation using identities, rationalization, etc...



ex 20 Find ∫
dx

1− cos x

∫
dx

1− cos x
=

∫ (
1

1− cos x

)(
1 + cos x

1 + cos x

)
dx

=

∫
1 + cos x

sin2 x
dx

=

∫ (
csc2 x +

cos x

sin2 x

)
dx

= . . .



Worksheet for Section 5

1. Evaluate the integral:

(a)

∫ 2

0

2t

(t− 3)2
dt

(b)

∫ 1

−1

earctan y

1 + y2
dy

(c)

∫ 3

1

r4 ln r dr

(d)

∫
sin3 θ cos5 θ dθ



Homework for Section 5

1. Evaluate the following:

(a)

∫
x√

3− x4
dx

(b)

∫
dx

(1− x2)3/2

(c)

∫
ex+e

x
dx

(d)

∫ 1

0

(1 +
√
x)8 dx

(e)

∫
3x2 − 2

x2 − 2x− 8
dx

(f)

∫ √
1 + x

1− x
dx

(g)

∫ √
3− 2x− x2 dx

(h)

∫ π/4

0

cos2 θ tan2 θ dθ

(i)

∫
ex
√

1 + ex dx
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